Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-17T10:41:04.434Z Has data issue: false hasContentIssue false

Taphonomy and paleoecology of the bivalve trace fossil Protovirgularia in deltaic heterolithic facies of the Miocene Chenque Formation, Patagonia, Argentina

Published online by Cambridge University Press:  20 May 2016

Noelia B. Carmona
Instituto Argentino de Oceanografía (IADO – CONICET), Florida 8000 (Camino La Carrindanga km 7,5) – Complejo CRIBABB – Edificio El – B8000FWB Bahía Bianca Argentina, ,
María Gabriela Mángano
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada, ,
Luis A. Buatois
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada, ,
Juan José Ponce
Instituto Argentino de Oceanografía (IADO – CONICET), Florida 8000 (Camino La Carrindanga km 7,5) – Complejo CRIBABB – Edificio El – B8000FWB Bahía Bianca Argentina, ,


Lower Miocene tide-influenced deltaic deposits from the Chenque Formation, Patagonia, Argentina, contain abundant and well-preserved biogenic structures attributed to locomotion of deposit-feeder protobranch bivalves. These trace fossils, assigned to the ichnogenus Protovirgularia, consist of delicate, inclined-to-horizontal, chevronate structures, mostly symmetrical with respect to a median axis. Identification of Protovirgularia at sandstone sole beds (hypichnion) is quite straightforward. Endichnial, exichnial and epichnial preservation in heterolithic facies, however, provides a wide variety of forms that depart from the archetypal Protovirgularia and challenges ichnotaxonomic classification. Specimens in prodelta and delta-front facies display morphologic features controlled by substrate fluidity, toponomy, and sedimentation rate. Most specimens show sharp, closely spaced chevrons and occur along sandstone/mudstone interfaces of the proximal prodelta and distal delta-front deposits. These forms reflect how tracemakers experienced significant friction while advancing through the sediment, which resulted in relatively smaller increments of movements. In contrast, variants of Protovirgularia formed in muddier beds, such as in prodeltaic facies, show irregular, poorly defined and unevenly spaced chevrons, and are locally asymmetric in relation to the axis, reflecting softer, water-rich, and plastic substrates. This sediment offered relatively low friction but poor anchorage for the foot. These occurrences of Protovirgularia in tide-influenced, marginal-marine deposits suggests that protobranchs were tolerant of fluctuations in salinity, sedimentation rates, turbidity, and oxygen depletion, displaying opportunistic strategies in stressed nearshore environments. Our evaluation of taphonomic controls and appropriate identification of Protovirgularia can provide valuable information for expanding our knowledge of the ethology and paleoecology of protobranch bivalves.

Research Article
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aitken, A. E. and Fournier, J. 1993. Macrobenthos communities of Cambridge, McBeth, and Itirbilung fjords, Baffin Island, Northwest Territories, Canada. Arctic, 46:6071.CrossRefGoogle Scholar
Bellosi, E. S. 1987. Litoestratigrafia y Sedimentación del “Patagoniano” en la Cuenca San Jorge, Terciario de Chubut y Santa Cruz. Unpublished Ph.D. dissertation, Universidad de Buenos Aires, 252 p.Google Scholar
Bellosi, E. S. 1995. Paleogeografia y cambios ambientales de la Patagonia central durante el Terciario medio. Boletín de Informaciones Petroleras (B.I.P.). Tercera época. Año 11, 44:5083.Google Scholar
Bender, K. and Davies, W. R. 1984. The effect of feeding by Yoldia limatula on bioturbation. Ophelia, 23:91100.CrossRefGoogle Scholar
Berger, V. Y. and Naumov, A. D. 2001. Salinity adaptations and bathymetric distribution of bivalve mollusks Portlandia arctica and Nuculana pernula in the White Sea. Russian Journal of Marine Biology, 27:308313.CrossRefGoogle Scholar
Bromley, R. G. 1996. Trace Fossils. Biology, Taphonomy and Applications. Chapman & Hall, London, 361 p.Google Scholar
Bromley, R. G., Uchman, A., Gregory, M. R., and Martin, A. J. 2003. Hillichnus lobosensis igen. et isp. nov., a complex trace fossil produced by tellinacean bivalves, Paleocene, Monterey, California, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 192:157186.CrossRefGoogle Scholar
Carmona, N. B. 2005. Icnología del Mioceno marino en la región del Golfo San Jorge. Unpublished Ph.D. dissertation, Universidad de Buenos Aires, 250 p.Google Scholar
Carmona, N. B., Buatois, L. A., Ponce, J. J., and Mángano, M. G. 2009. Ichnology and sedimentology of a tide-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: Trace-fossil distribution and response to environmental stresses. Palaeogeography, Palaeoclimatology, Palaeoecology, 273:7586.CrossRefGoogle Scholar
Dale, J. E., Aitken, A. E., Gilbert, R., and Risk, M. J. 1989. Macrofauna of Arctic fjords. Marine Geology, 85:331358.CrossRefGoogle Scholar
Demathieu, G., Gand, G., and Toutin-Morin, N. 1992. La Palichnofaune des bassins Permiens Provençaux. Geobios, 25:1954.CrossRefGoogle Scholar
Ekdale, A. A. and Bromley, R. G. 2001. A day and a night in the life of a cleft-foot clam: Protovirgularia-Lockeia-Lophoctenium. Lethaia, 34:119124.CrossRefGoogle Scholar
Gibert, J. M. De and Domenech, R. 2008. Trazas fósiles de nuculoideos (Protovirgularia) del Mioceno marino de la Cuenca del Vallès-Penedès. Revista Española de Paleontología, 23:129138.Google Scholar
Han, Y. and Pickerill, R. K. 1994. Taxonomic reassessment of Protovirgularia M'Coy, 1850 with new examples from the Paleozoic of New Brunswick, eastern Canada. Ichnos, 3:203212.CrossRefGoogle Scholar
Kranz, P. M. 1972. The catastrophic burial of bivalves and its paleoecological significance. Ph.D. Dissertation, University of Chicago, 177 p.Google Scholar
Maceachern, J. A., Bann, K. L., Bhattacharya, J. P., and Howell, C. D. Jr. 2005. Ichnology of deltas: Organism responses to the dynamic interplay of rivers, waves, storms, and tides, p. 4985. In Giosan, L., and Bhattacharya, J. P. (eds.), River Deltas—Concepts, Models and Examples. Society of Economic Paleontologists and Mineralogists Special Publication 83.Google Scholar
Mángano, M. G., Buatois, L. A., West, R. R., and Maples, C. G. 1998. Contrasting behavioral and feeding strategies recorded by tidal-bivalve trace fossils from the Upper Carboniferous of Eastern Kansas. Palaios, 13:335351.CrossRefGoogle Scholar
Mángano, M. G., Buatois, L. A., West, R. R., and Maples, C. G. 2002. Ichnology of Pennsylvanian equatorial tidal flat. The Stull Shale Member at Waverly, Eastern Kansas. Kansas Geological Survey Bulletin 245, 133 p.Google Scholar
Mángano, M. G. and Buatois, L. A. 2004. Ichnology of Carboniferous tide-influenced environments and tidal flat variability in the North American Midcontinent, p. 157178. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publication 228.Google Scholar
Mángano, M. G. and Droser, M. 2004. The ichnologic record of the Ordovician radiation, p. 369379. In Webby, B., Droser, M., Paris, F., and Percival, G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press.CrossRefGoogle Scholar
Maples, C. G. and West, R. R. 1990. Trace-fossil taxonomy and substrate fluidity: an example using Late Carboniferous bivalve traces. Abstracts, 13th International Sedimentological Congress, Nottingham, p. 328.Google Scholar
Martinsson, A. 1970. Toponomy of trace fossils, p. 323330. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal Special Issue 3.Google Scholar
Maurer, D., Keck, R. T., Tinsman, J. C., and Leathern, W. A. 1981. Vertical migration and mortality of benthos in dredged material: Part I – Mollusca. Marine Environmental Research, 4:299319.CrossRefGoogle Scholar
M'Coy, F. 1850. On some genera and species of Silurian Radiata in the Collection of the University of Cambridge. Annals and Magazine of Natural History, 2:270290.Google Scholar
Miller, S. A. and Dyer, C. B. 1878. Contributions to paleontology no. 1. Journal of the Cincinnati Society of Natural History, 1:2439.Google Scholar
Nakaoka, M. 1992. Spatial and seasonal variation in growth rate and secondary production of Yoldia notabilis in Otsuchi Bay, Japan, with reference to the influence of food supply from the water column. Marine Ecology Progress Series, 88:15223.CrossRefGoogle Scholar
Pattison, S. 2007. Channelized and lobate isolated shelf bodies, Upper Aberdeen to Lower Kenilworth interval (Campanian, Blackhawk Formation), Book Cliffs, Eastern Utah: Sedimentology, Ichnology, Architecture and Depositional Environment. SEPM Research Conference, Ichnologic Applications Sequence Stratigraphic Problems. Price, Utah, p. 113116.Google Scholar
Pianka, E. R. 1970. On r and K selection. American Naturalist, 104:592597.CrossRefGoogle Scholar
Savrda, C. E. and Bottjer, D. J. 1994. Ichnofossils and ichnofabrics in rhythmically bedded pelagic/hemipelagic carbonates: recognition and evaluation of benthic redox and scour cycles, p. 195210. In de Boer, P. and Smith, D. G. (eds.), Orbital Forcing and Cyclic Sequences, International Association of Sedimentologists, Special Publication 19, Oxford. Blackwell Scientific.Google Scholar
Seilacher, A. and Seilacher, E. 1994. Bivalvian trace fossils: A lesson from Actuopaleontology. Courier Forschungsinstitut Institut Senckenberg, 169:515.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca), p. 1269. Geological Society of America Memoir 25.CrossRefGoogle Scholar
Stasek, C. R. 1965. Feeding and particle-sorting in Yoldia ensifera (Bivalvia: Protobranchia), with notes on other nuculanids. Malacologia, 2:349366.Google Scholar
Stead, R. A. and Thompson, R. J. 2006. The influence of an intermittent food supply on the feeding behaviour of Yoldia hyperborea (Bivalvia: Nuculanidae). Journal of Experimental Marine Biology and Ecology, 332:3748.CrossRefGoogle Scholar
Stern, F. M. and Stickle, W. B. 1978. Effects of turbidity and suspended material in aquatic environments. Literature review. Technical Report D-78–21. Vicksburg, Mississippi. United States Army Engineers Waterways Experimental Station, 117 p.Google Scholar
Syvitski, J. P. M., Farrow, G. E., Atkinson, R. J. A., Moore, P. G., and Andrews, J. T. 1989. Baffin Island Fjord macrobenthos: Bottom communities and environmental significance. Arctic, 42:232247.CrossRefGoogle Scholar
Taylor, A. C., Davenport, J., and Allen, J. A. 1995. Anoxic survival, oxygen consumption and haemocyanin characteristics in the protobranch bivalve Nucula sulcata Bronn. Comparative Biochemistry and Physiology, 112A:333338.CrossRefGoogle Scholar
Trueman, E. R. 1966. Bivalve molluscs: fluid dynamics of burrowing. Science, 152:523525.CrossRefGoogle Scholar
Trueman, E. R. 1975. The locomotion of soft-bodied animals. Edward Arnold, London, 200 p.Google Scholar
Trueman, E. R., Brand, A. R., and Davis, P. 1966. The effect of substrate and shell shape on the burrowing of some common bivalves. Proceedings of the Malacological Society of London, 37:97109.Google Scholar
Uchman, A. 1998. Taxonomy and ethology of flysch trace fossils: revision of the Marian Ksiazkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68:105218.Google Scholar
Uchman, A. 2004. Deep-sea trace fossils controlled by palaeo-oxygenation and deposition: an example from the Lower Cretaceous dark flysch deposits of the Silesian Unit, Carpathians, Poland. Fossils and Strata, 51:3957.Google Scholar
Uchman, A. and Gazdzicki, A. 2006. New trace fossils from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Research, 27:153170.Google Scholar
Wignall, P. B. and Pickering, K. T. 1993. Paleoecology and sedimentology across a Jurassic fault scarp, northeast Scotland. Journal of the Geological Society of London, 150:323340.CrossRefGoogle Scholar
Wiodarska-Kowalczuk, M. 2007. Molluscs in Kongsfjorden (Spitsbergen, Svalbard): a species list and patterns of distribution and diversity. Polar Research, 26:4863.CrossRefGoogle Scholar
Wiodarska-Kowalczuk, M. and Pearson, T. H. 2004. Soft-bottom macrobenthic faunal associations and factors affecting species distribution in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biology, 27:155167.CrossRefGoogle Scholar
Zardus, J. D. 2002. Protobranch bivalves, p. 165. Advances in marine biology. Volume 42. Molluscan Radiation—Lesser-known branches.Google Scholar