Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-25T17:09:14.195Z Has data issue: false hasContentIssue false

Wettability in pressure infiltration of SiC and oxidized SiC particle compacts by molten Al and Al-12wt%Si alloy

Published online by Cambridge University Press:  31 January 2011

J.M. Molina*
Affiliation:
Departamento de Física Aplicada, Universidad de Alicante, E-03080, Alicante, Spain; and Instituto de Materiales, Universidad de Alicante, E-03080, Alicante, Spain
J. Tian
Affiliation:
Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100, People’s Republic of China
C. Garcia-Cordovilla
Affiliation:
Centro de Investigación y Desarrollo, Flat Rolling Products, Alcoa Europe, E-03080, Alicante, Spain
E. Louis
Affiliation:
Departamento de Física Aplicada, Universidad de Alicante, E-03080, Alicante, Spain; Instituto de Materiales, Universidad de Alicante, E-03080, Alicante, Spain; and Unidad Asociada of the Consejo Superior de Investigaciones Científicas, Universidad de Alicante, E-03080, Alicante, Spain
J. Narciso
Affiliation:
Instituto de Materiales, Universidad de Alicante, E-03080, Alicante, Spain; and Departamento de Química Inorgánica, Universidad de Alicante, E-03080, Alicante, Spain
*
a)Address all correspondence to this author. e-mail: jmmj@ua.es
Get access

Abstract

The infiltration behavior of compacts of SiC particles in two surface conditions, as-received and thermally oxidized, was investigated by using pure Al and Al-12wt%Si as infiltrating metals. Analysis of the threshold pressure for infiltration revealed that the process is governed by the same contact angle for all different systems, no matter the metal or particle condition. This leads to the conclusion that oxidation does not modify the wetting characteristics of the particles, most probably because they are already covered by a thin native oxide layer that remains unaltered in processing routes involving short contact times and low temperatures, such as actual conditions of pressure infiltration at 700 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chawla, K.K.: Composite Materials—Science and Processing Springer Berlin 1987 79–86102–133229–244CrossRefGoogle Scholar
2Taya, M.Arsenault, R.J.: Metal Matrix Composites—Thermomechanical Behaviour Pergamon Oxford 1989 41–156Google Scholar
3Mortensen, A.: Interface chemistry in inorganic composites in Proc. 9th Riso Int. Symp. on Metallurgy and Materials Science edited by S.I. Andersen, H. Lilholt, and O.B. Pedersen, September 5–9, 1988 Riso National Laboratory Roskilde, Denmark 1988 141Google Scholar
4Diwanji, A.P.Hall, I.W.: Fiber and fiber-surface treatment effects in carbon aluminum metal matrix composites. J. Mater. Sci. 27(8), 2093 1992CrossRefGoogle Scholar
5Urena, A., De Salazar, J.M.G., Gil, L., Rodrigo, P., Martinez, E.E., Baldonedo, J.L.Criado, E.: Study on the reactivity between aluminium alloys and SiC particles. Bol. Soc. Esp. Ceram. V 39(2), 243 2000Google Scholar
6Kim, H.J., Trumble, K.P.Bowman, K.J.: Layered boron carbide-aluminum composites with large changes in microstructure. Mater. Sci. Forum 492–493, 673 2005Google Scholar
7Rao, B.S.Jayaram, V.: Pressureless infiltration of Al-Mg based alloys into Al2O3 preforms: Mechanisms and phenomenology. Acta Mater. 49(13), 2373 2001Google Scholar
8Salvo, L., Lesperance, G., Suery, M.Legoux, J.G.: Interfacial reactions and age-hardening in Al-Mg-Si metal-matrix composites reinforced with SiC particles. Mater. Sci. Eng., A: Struct. 177(1–2), 173 1994CrossRefGoogle Scholar
9Rodriguez-Guerrero, A., Sanchez, S.A., Narciso, J., Louis, E.Rodriguez-Reinoso, F.: Pressure infiltration of Al-12 wt% Si-X (X = Cu, Ti, Mg) alloys into graphite particle preforms. Acta Mater. 54, 1821 2006CrossRefGoogle Scholar
10Lloyd, D.J.Jin, I.: Melt processed aluminum matrix particle reinforced composites in Comprehensive Composite Materials Vol. 3 edited by T.W. Clyne Pergamon Oxford 2000 555CrossRefGoogle Scholar
11Urena, A., Escalera, M.D., Rodrigo, P., Baldonedo, J.L.Gil, L.: Active coatings for SiC particles to reduce the degradation by liquid aluminium during processing of aluminium matrix composites: Study of interfacial reactions. J. Microsc. (Oxford) 201 122 Part 2 2001Google Scholar
12Urena, A., Martinez, E.E., Rodrigo, P.Gil, L.: Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Compos. Sci. Technol. 64(12), 1843 2004CrossRefGoogle Scholar
13Mortensen, A.Jin, I.: Solidification processing of metal matrix composites. Int. Mater. Rev. 37(3), 101 1992Google Scholar
14Mortensen, A.: Interfacial phenomena in the solidification processing of metal matrix composites. Mater. Sci. Eng., A: Struct. 135, 1 1991CrossRefGoogle Scholar
15Narciso, J., Alonso, A., Pamies, A., Garcia-Cordovilla, C.Louis, E.: Factors affecting pressure infiltration of packed SiC particulates by liquid aluminium. Metall. Mater. Trans. A 26, 983 1995CrossRefGoogle Scholar
16Laurent, V., Chatain, D.Eustathopoulos, N.: Wettability of SiO2 and oxidized SiC by aluminium. Mater. Sci. Eng., A: Struct. 135, 89 1991CrossRefGoogle Scholar
17Garcia-Cordovilla, C., Louis, E.Narciso, J.: Pressure infiltration of packed ceramic particulates by liquid metals. Acta Mater. 47(18), 4461 1999Google Scholar
18Mortensen, A.Cornie, J.A.: On the infiltration of metal matrix composites. Metall. Trans. A 18, 1160 1987CrossRefGoogle Scholar
19Molina, J.M., Arpon, R., Saravanan, R., Garcia-Cordovilla, C., Narciso, J.Louis, E.: Threshold pressure for infiltration and particle specific surface area of particle compacts with bimodal size distributions. Scripta Mater. 51, 623 2004CrossRefGoogle Scholar
20Alonso, A., Pamies, A., Narciso, J., Garcia-Cordovilla, C.Louis, E.: Evaluation of the wettability of liquid aluminum with ceramic particulates (SiC, TiC, Al2O3) by means of pressure infiltration. Metall. Trans. A 24, 1423 1993CrossRefGoogle Scholar
21Narciso, J., Garcia-Cordovilla, C.Louis, E.: Reactivity of thermally oxidized and unoxidized SiC particulates with aluminum silicon alloys. Mater. Sci. Eng., B: Solid 15(2), 148 1992CrossRefGoogle Scholar
22Narciso, J., Alonso, A., Pamies, A., Garcia-Cordovilla, C.Louis, E.: Wettability of binary and ternary alloys of the system Al–Si–Mg with SiC particulates. Scripta Metall. Mater. 31, 1495 1994CrossRefGoogle Scholar
23Pamies, A., Garcia-Cordovilla, C.Louis, E.: The measurement of surface-tension of liquid aluminum by means of the maximum bubble pressure method—the effect of surface oxidation. Scripta Metall. 18, 869 1984Google Scholar
24Molina, J.M., Voytovych, R., Louis, E.Eustathopoulos, N.: The surface tension of liquid aluminium in high vacuum: the role of surface condition. Int. J. Adhes. Adhes.,27, 394 2007Google Scholar
25Goicoechea, J., Garcia-Cordovilla, C., Louis, E.Pamies, A.: Surface-tension of binary and ternary aluminum alloys of the systems Al–Si–Mg and Al–Zn–Mg. J. Mater. Sci. 27, 5247 1992Google Scholar
26Laurent, V., Rado, C.Eustathopoulos, N.: Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng., A: Struct. 205, 1 1996Google Scholar