Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-30T04:36:13.817Z Has data issue: false hasContentIssue false

Vickers hardness and compressive properties of bulk metallic glasses and nanostructure-dendrite composites

Published online by Cambridge University Press:  03 March 2011

X.F. Pan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
H. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Z.F. Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
M. Stoica
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute of Metallic Materials, D-01171 Dresden, Germany
G. He
Affiliation:
School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, People’s Republic of China
J. Eckert
Affiliation:
Physical Metallurgy Division, Department of Materials and Geo Sciences, Darmstadt University of Technology, D-64287 Darmstadt, Germany
*
a)Address all correspondence to this author.e-mail: zhfzhang@imr.ac.cn
Get access

Abstract

The compressive properties and the Vickers hardness of Cu-, Fe-, Mg-, and Zr-based monolithic bulk metallic glasses (BMGs) as well as Ti-based nanostructure-dendrite composites were investigated and compared. The monolithic BMGs exhibit nearly the same yield strength σ y and fracture strength σf but poor plasticity. The Vickers hardness HV of the monolithic BMGs follows the empirical relationship HV/3 ≈σy ≈σf. The Ti-based composites yield at a relatively low stress level (less than 850 MPa) but fail at a very high fracture stress (∼ 2 GPa) and exhibit a large strain hardening ability. Accordingly, the Vickers hardness HV of the Ti-based nanostructure-dendrite composites obeys the relationship σy <HV/3 <σf. Based on these results, the relationship between the Vickers hardness and the compressive properties of the investigated materials will be discussed by taking the yield and fracture strength (σ y and σf), the strain hardening exponent n, and the elastic and plastic energy stored upon deformation (δΕ and δP) into account.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klement, J.W., Willens, R.H. and Duwez, P.: Non-crystalline structure in solidified gold-silicon. Nature 187, 869 (1960).CrossRefGoogle Scholar
2Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
3Bengusc, V.Z., Diko, P., Csach, K., Miskuf, J., Ocelik, V., Korolkova, E.B., Tabachnikova, E.D. and Duhaj, P.: Failure crack orientation at ductile shear fracture of Fe80−xNixB20 metallic glass ribbons. J. Mater. Sci. 25, 1598 (1990).CrossRefGoogle Scholar
4Donovan, P.E.: Compressive deformation of amorphous Pd40Ni40P20. Mater. Sci. Eng. 98, 487 (1988).CrossRefGoogle Scholar
5Inoue, A., Zhang, T. and Masumoto, T.: Zr– Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 31, 177 (1990).CrossRefGoogle Scholar
6Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: High-strengtth Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
7De Hey, P., Sietsma, J. and van den Beukel, A.: Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Mater. 46, 5873 (1998).CrossRefGoogle Scholar
8Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
9Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
10Wang, W.H., Dong, C. and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. Rep. 44, 45 (2004).CrossRefGoogle Scholar
11Pampillo, C.A.: Review: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 (1975).CrossRefGoogle Scholar
12Liu, C.T., Heatherly, L., Easton, D.S.: Test environment and mechanical properties of Zr-based bulk amorphous alloys. Metall. Mater. Trans. A29, 1811 (1998).CrossRefGoogle Scholar
13Zhang, Z.F. and Eckert, J.: Unified tensile fracture criterion. Phys. Rev. Lett. 94, 094301 (2005).CrossRefGoogle ScholarPubMed
14Hays, C.C., Kim, C.P. and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
15Szuecs, F., Kim, C.P. and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
16Kühn, U., Eckert, J., Mattern, N. and Schultz, L.: ZrNbCuNiAl bulk metallic glass composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 (2002).CrossRefGoogle Scholar
17He, G., Eckertx, J., Löser, W. and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
18He, G., Eckert, J., Löser, W. and Hagiwara, M.: Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti–Cu–Ni–Sn–Nb alloys. Acta Mater. 52, 3035 (2004).CrossRefGoogle Scholar
19Zhang, Z.F., He, G., Zhang, H. and Eckert, J.: Rotation mechanism of shear fracture induced by high plasticity in Ti-based nanostructured composites containing ductile dendrites. Scripta Mater. 52, 945 (2005).CrossRefGoogle Scholar
20Zhang, H., Pan, X.F., Zhang, Z.F., Das, J., Kim, K.B., Müller, C., Kusy, M., Gebert, A., He, G. and Eckert, J.: Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites. Z. Metall. (2005, in press).Google Scholar
21Chen, H.S.: Glassy metals. Rep. Prog. Phys. 43, 533 (1980).CrossRefGoogle Scholar
22Kim, S.G., Inoue, A. and Masumoto, T.: High mechanical strength of Mg–Ni–Y and Mg–Cu–Y amorphous alloys with significant supercooled liquid region. Mater. Trans. JIM. 31, 933 (1990).CrossRefGoogle Scholar
23Vaillant, M.L., Keryvin, V., Rouxel, T. and Kawamura, Y.: Changes in the mechanical properties of a Zr55Cu30Al10Ni5 bulk metallic glass due to heat treatments below 540°C. Scripta Mater. 47, 19 (2002).CrossRefGoogle Scholar
24Inoue, A., Sobu, S., Louzguine, D.V., Kimura, H. and Sasamori, K.: Ultrahigh strength Al-based amorphous alloys containing Sc. J. Mater. Res. 19, 1539 (2004).CrossRefGoogle Scholar
25Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).CrossRefGoogle Scholar
26Zhang, W. and Inoue, A.: Formation and mechanical properties of Ni-based Ni–Nb–Ti–Hf bulk glassy alloys. Scripta Mater. 48, 641 (2003).CrossRefGoogle Scholar
27Inoue, A., Shen, B.L., Yavari, A.R. and Greer, A.L.: Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems. J. Mater. Res. 18, 1487 (2003).CrossRefGoogle Scholar
28Inoue, A., Shen, B.L. and Chang, C.T.: Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0:75 B0:2Si0:05]96Nb4 system. Acta Mater. 52, 4093 (2004).CrossRefGoogle Scholar
29Kim, Y.C., Kim, W.T. and Kim, D.H.: A development of Ti-based bulk metallic glass. Mater. Sci. Eng. A375–377, 127 (2004).CrossRefGoogle Scholar
30Zhang, Z.F., He, G. and Eckert, J.: Shear and distensile fracture behavior of Ti-based composite with ductile dendrites. Philos. Mag. 85, 897 (2005).CrossRefGoogle Scholar
31Zhang, Z.F., Eckert, J. and Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).CrossRefGoogle Scholar
32Stoica, M., Eckert, J., Roth, S., Zhang, Z.F., Schultz, L. and Wang, W.H.: Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass. Intermetallics 13, 764 (2005).CrossRefGoogle Scholar
33Men, H., Hu, Z.Q. and Xu, J.: Bulk metallic glass formation in the Mg–Cu–Zn–Y system. Scripta Mater. 46, 700 (2002).CrossRefGoogle Scholar
34Wright, W.J., Saha, R. and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. JIM 42, 642 (2001).CrossRefGoogle Scholar
35Zhang, Z.F., He, G., Eckert, J. and Schultz, L.: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 (2003).CrossRefGoogle ScholarPubMed
36Li, H., Ghosh, A., Hom, Y.H. and Brandt, R.C.: The frictional component of the indentation size effect in low load microhardness testing. J. Mater. Res. 8, 1028 (1993).CrossRefGoogle Scholar
37Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R. and Hemker, K.J.: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A80, 1017 (2000).CrossRefGoogle Scholar
38Lawn, B.R.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1993).CrossRefGoogle Scholar