Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-21T08:39:18.706Z Has data issue: false hasContentIssue false

Variation of orientation and morphology of epitaxial SrBi2Ta2O9 and SrBi2Nb2O9 thin films via the coating-pyrolysis process

Published online by Cambridge University Press:  31 January 2011

T. Nagahama
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1–1, Tsukuba, Ibaraki 305–8565, Japan
T. Manabe
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1–1, Tsukuba, Ibaraki 305–8565, Japan
I. Yamaguchi
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1–1, Tsukuba, Ibaraki 305–8565, Japan
T. Kumagai
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1–1, Tsukuba, Ibaraki 305–8565, Japan
S. Mizuta
Affiliation:
National Institute of Materials and Chemical Research, Higashi 1–1, Tsukuba, Ibaraki 305–8565, Japan
T. Tsuchiya
Affiliation:
Department of Materials Science and Technology, Science University of Tokyo, Yamazaki 2641, Noda, Chiba 278–0022, Japan
Get access

Abstract

Orientation-controlled epitaxial thin films of bismuth layer-structured ferroelectrics, SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN), were prepared on single-crystal SrTiO3 (STO) substrates by the coating-pyrolysis process. Most of the SBT (SBN) films showed the (106) and (001) orientations on STO(110) and (001), respectively. The degree of orientation, in terms of the ratio of peak intensity to the background level in the x-ray diffraction φ-scan profile for the film, greatly increased with a decrease in the oxygen partial pressure, p(O2), of annealing atmosphere at 800 °C. Interestingly, coexistence of the (110)-oriented grains with the (106)-oriented ones on STO(110) [and the (100)-oriented grains with the (001)-oriented ones on STO(001)] was observed exclusively in the SBT films annealed at 700–750 °C under p(O2) of 10 Pa. Atomic force microscopy observations showed that the surface morphology of the SBT films remained almost unchanged, i.e., comprising round-shaped grains of submicrometer size, whereas that of the SBN films drastically changed, according to the variation in orientation of substrate surfaces or in annealing conditions, i.e., temperature, p(O2), and time.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mihara, T., Yoshimori, H., Watanabe, H., and Araujo, C.A.P, Jpn. J. Appl. Phys. 34, 5233 (1995).Google Scholar
2.Mihara, T., Watanabe, H., Araujo, C.A.P, Cuchiaro, J., Scott, M., and McMillan, L.D., Proc. 4th Int. Symp. Integrated Ferroelectr. 137 (1992).Google Scholar
3.Watanabe, H., Mihara, T., Yoshimori, H., and Araujo, C.A.P, Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
4.Scott, J.F. and Araujo, C.A.P, Science 246, 1400 (1989).Google Scholar
5.Newnham, R.E., Wolfe, R.W., and Dorrian, J.F., Mater. Res. Bull. 6, 1029 (1971).Google Scholar
6.Ito, Y., Ushikubo, M., Yokoyama, S., Matsunaga, H., Atsuki, T., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 35, 4925 (1996).Google Scholar
7.Joshi, P.C., Ryu, S.O., Zhang, X., and Desu, S.B., Appl. Phys. Lett. 70, 1080 (1997).Google Scholar
8.Desu, S.B., Vijay, D.P., Zhang, X., and He, B-P., Appl. Phys. Lett. 69, 1719 (1996).Google Scholar
9.Fujimura, N., Thomas, D.T., Streiffer, S.K., and Kingon, A.I., Jpn. J. Appl. Phys. 37, 5185 (1998).Google Scholar
10.Machida, A., Nagasawa, N., Ami, T., and Suzuki, M., Jpn. J. Appl. Phys. 36, 7267 (1997).CrossRefGoogle Scholar
11.Lettieri, J., Jia, Y., Urbanik, M., Weber, C.I., Maria, J-P., Schlom, D.G., Li, H., Ramesh, R., Uecker, R., and Reiche, P., Appl. Phys. Lett. 73, 2923 (1998).CrossRefGoogle Scholar
12.Nagahama, T., Manabe, T., Yamaguchi, I., Kumagai, T., Mizuta, S., and Tsuchiya, T., J. Mater. Res. 14, 3090 (1999).Google Scholar
13.Nagahama, T., Manabe, T., Yamaguchi, I., Kumagai, T., Tsuchiya, T., and Mizuta, S., Thin Solid Films 353, 52 (1999).CrossRefGoogle Scholar
14.Nagahama, T., Manabe, T., Yamaguchi, I., Kumagai, T., Tsuchiya, T., and Mizuta, S., in CSJ Series: Publications of the Ceramic Society of Japan, Vol. 2, Electroceramics in Japan II, edited by Mizutani, N., Shinozaki, K., Kamehara, N., and Kimura, T. (Trans Tech, Aedermannsdorf, Switzerland, 1999), p. 139.Google Scholar
15.Subbarao, E.C., J. Am. Ceram. Soc. 45, 166 (1962).Google Scholar
16.Rae, A.D., Thompson, J.G., and Withers, R.L., Acta Crystallogr. B48, 418 (1992).CrossRefGoogle Scholar
17.Suzuki, M., Nagasawa, N., Machida, A., and Ami, T., Jpn. J. Appl. Phys. 35, L564 (1996).CrossRefGoogle Scholar
18.Ami, T., Hironaka, K., Isobe, C., Nagel, N., Sugiyama, M., Ikeda, Y., Watanabe, K., Machida, A., Miura, K., and Tanaka, M., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics II, edited by Desu, S.B., Beach, D.B., and Van Buskirk, P.C. (Mater. Res. Soc. Symp. Proc. 415, Pittsburgh, PA, 1996), p. 195.Google Scholar
19.Funakubo, H. (private communications).Google Scholar