Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T21:44:01.201Z Has data issue: false hasContentIssue false

Variant structure in metal-organic-chemical-vapor-deposition-derived SnO2 thin films on sapphire (0001)

Published online by Cambridge University Press:  03 March 2011

Donhang Liu
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Q. Wang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Haydn Chen
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

Tin oxide (SnO2) thin films were deposited on sapphire (0001) substrate by metal-organic chemical vapor deposition (MOCVD) at temperatures of 600 and 700 °C. The microstructure of the deposited films was characterized by x-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). At the growth conditions studied, films were single-phase rutile and epitaxial, but showed variant structures. Three distinct in-plane epitaxial relationships were observed between the films and the substrate. A crystallographic model is proposed to explain the film morphology. This model can successfully predict the ratio of the width to the length of an averaged grain size based upon the lattice mismatch of the film-substrate interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
2Bertolet, D. C., Hsu, J. K., and Lau, K. M., J. Appl. Phys. 62, 120 (1987).Google Scholar
3Kawai, H., Kaneko, K., and Watanabe, N., J. Appl. Phys. 56, 463 (1984).CrossRefGoogle Scholar
4Sinharoy, S., Buhay, H., Lampe, D. R., and Francombe, M. F., J. Vac. Sci. Technol. A 10, 1554 (1992).CrossRefGoogle Scholar
5Kulwicki, B. M., Amin, A., Beratan, H. R., and Hanson, C. M., IEEE 7th Int. Symp. Appl. Ferroelectrics (1992), p. 1.Google Scholar
6Polla, D. L., IEEE 7th Int. Symp. Appl. Ferroelectrics (1992), p. 127.CrossRefGoogle Scholar
7Tatsuyama, C. and Ichimura, S., Jpn. J. Appl. Phys. 15, 843 (1976).Google Scholar
8Aoki, A. and Sasakura, H., Jpn. J. Appl. Phys. 9, 582 (1970).CrossRefGoogle Scholar
9Atkison, A. and Moseley, P. T., Appl. Surf. Sci. 65/66, 212 (1993).Google Scholar
10Madou, M. J. and Morrison, S. R., Chemical Sensing with Solid-State Devices (Academic Press, San Diego, CA, 1989), Chap. 10, p. 424.Google Scholar
11Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, C. M., Chiarello, R. P., Zhang, T. J., and Lam, D. J., J. Mater. Res. 7, 2495 (1992).CrossRefGoogle Scholar
12Chang, H. L. M., Zhang, T. J., Zhang, H., Guo, J., Kim, H. K., and Lam, D. J., J. Mater. Res. 8, 2634 (1993).CrossRefGoogle Scholar
13Lee, W. E. and Lagerlof, K. P. D., J. Electron Microscopy Tech. 2, 247 (1985).Google Scholar