Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T22:46:24.088Z Has data issue: false hasContentIssue false

Uniform and rapid nucleation of diamond via bias-assisted hot filament chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Yan Chen
Affiliation:
State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-5, Beijing 100080, People's Republic of China
Feng Chen
Affiliation:
State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-5, Beijing 100080, People's Republic of China
E. G. Wang
Affiliation:
State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-5, Beijing 100080, People's Republic of China
Get access

Extract

A new method was developed to obtain high density, uniform diamond nuclei via bias-assisted hot filament chemical vapor deposition. A negative bias was applied between a mesh (installed above the filament) and the substrate to produce abundant uniform ions at the growth surface. Raman spectroscopy, scanning electron microscopy, and Auger electron microscopy were used to analyze the films obtained. The results show that a layer of diamond film with a nucleation density of 109/cm2 can be obtained after 10 min deposition under 1 Torr.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yugo, S., Kamia, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
2.Stoner, B. R., Ma, G. H., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
3.Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Füsser, H-J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
4.Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
5.Katoh, M., Aoki, M., and Kawarada, H., Jpn. J. Appl. Phys. 33, L194 (1994).CrossRefGoogle Scholar
6.Stubhan, F., Ferguson, M., Füsser, H-J., and Behm, R. J., Appl. Phys. Lett. 66, 1900 (1995).CrossRefGoogle Scholar
7.Chen, Q. J., Yang, J., and Lin, Z. D., Appl. Phys. Lett. 67, 1853 (1995).CrossRefGoogle Scholar
8.Zhu, W., Sivazlian, F. R., Stoner, B. R., and Glass, J. T., J. Mater. Res. 10, 425 (1995).CrossRefGoogle Scholar
9.Chen, Y., Chen, F., and Wang, E. G., unpublished.Google Scholar
10.Grimsch, M. H., Anastakis, E., and Cardona, M., Phys. Rev. B 18, 90 (1991).Google Scholar
11.Badzian, A., Badzian, T., and Lee, S-T., Appl. Phys. Lett. 62, 3432 (1993).CrossRefGoogle Scholar
12.Yugo, S., Kimura, T., and Kania, T., Diam. Relat. Mater. 2, 328 (1993).CrossRefGoogle Scholar
13.Jiang, X., Schiffmann, K., and Klages, C-P., Phys. Rev. B 50, 8402 (1994).CrossRefGoogle Scholar
14.Popovici, G., Chao, C. H., Prelas, M. A., Charlson, E. J., and Meese, J. M., J. Mater. Res. 10, 2011 (1995).CrossRefGoogle Scholar
15.Himpsel, F. J., Knap, J. A., Van Vechten, J. A., and Fastman, D. A., Phys. Rev. B 20, 624 (1979).CrossRefGoogle Scholar