Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T15:07:55.660Z Has data issue: false hasContentIssue false

Uniaxial stress dependence of the dielectric properties in the Na0.5Bi0.5TiO3–NaTaO3 system

Published online by Cambridge University Press:  31 January 2011

Boštjan Jančar
Affiliation:
Advanced Materials Department, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
Mari-Ann Einarsrud
Affiliation:
Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Danilo Suvorov
Affiliation:
Advanced Materials Department, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
Get access

Abstract

The dependence of the dielectric properties on the uniaxial compressive stress and the stress-strain properties was investigated for the case of (1-x)Na0.5Bi0.5TiO3xNaTaO3 ceramics. Special attention was focused on the time component and the reversibility of the permittivity–stress dependence. The results were interpreted according to the samples' polar and symmetry states and the ferroelasticity. The time dependence and irreversible changes of the dielectric properties were connected with the domain structure of the materials, which is modified under the applied stress. The irreversible changes observed in the macroscopically nonferroelectric compositions were related to the ferroelastic properties. The stress sensitivity increased with the addition of NaTaO3 from 3% in pure Na0.5Bi0.5TiO3 to 14% in the sample with 15 mol% of NaTaO3 (at 200 MPa and 1 MHz). The reversibility was improved by mechanical modification of the samples' domain state, while the dielectric response remained time dependent.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uchino, K.Ferroelectric Devices (Marcel Dekker, New York 2000)Google Scholar
2.Ikeda, T.Fundamentals of Piezoelectricity (Oxford University Press, Oxford 1990)Google Scholar
3.Meng, Z.Y., Cross, L.E.Determination of the electrostriction tensor components in single-crystal CaF2 from the uniaxial stress dependence of the dielectric permittivity. J. Appl. Phys. 57, 488 (1985)CrossRefGoogle Scholar
4.Uchino, K., Nomura, S., Cross, L.E., Jang, S.J., Newnham, R.E.Pressure gauge using relaxor ferroelectrics. Jpn. J. Appl. Phys. 20, L367 (1981)CrossRefGoogle Scholar
5.Bronowicki, A.J., McIntyre, L.J., Betros, R.S., Dvorsky, G.R.Mechanical validation of smart structures. Smart Mater. Struct. 5, 129 (1996)CrossRefGoogle Scholar
6.Zhou, D., Kamlah, M., Munz, D.Effects of bias electric fields on the non-linear ferroelastic behavior of soft lead zirconate titanate piezoceramics. J. Am. Ceram. Soc. 88, 867 (2005)CrossRefGoogle Scholar
7.Fotinich, Y., Carman, G.P.Stresses in piezoceramics undergoing polarization switchings. J. Appl. Phys. 88, 6715 (2000)CrossRefGoogle Scholar
8.Shilo, D., Burscu, E., Ravichandran, G., Bhattacharya, K.A model for large electrostrictive actuation in ferroelectric single crystals. Int. J. Solids Struct. 44, 2053 (2007)CrossRefGoogle Scholar
9.Kamlah, M.Ferroelectric and ferroelastic piezoceramics—Modeling of electromechanical hysteresis phenomena. Continuum Mech. Thermodyn. 13, 219 (2001)CrossRefGoogle Scholar
10.Zhang, Q.M., Zhao, J.Z., Uchino, K., Zheng, J.H.Change of the weak-field properties of Pb(ZrTi)O3 piezoceramics with compressive uniaxial stresses and its links to the effect of dopants on the stability of the polarizations in the materials. J. Mater. Res. 12, 226 (1997)CrossRefGoogle Scholar
11.Zhao, J., Mueller, V., Zhang, Q.M.The influence of the external stress on the electromechanical response of electrostrictive 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 in the DC electrical field-biased state. J. Mater. Res. 14, 948 (1999)CrossRefGoogle Scholar
12.Zhou, D., Kamlah, M., Munz, D.Effects of uniaxial prestress on the ferroelectric hysteretic response of soft PZT. J. Eur. Ceram. Soc. 25, 425 (2005)CrossRefGoogle Scholar
13.Steiner, O., Tagantsev, A.K., Colla, E.L., Setter, N.Uniaxial stress dependence of the permittivity of electroceramics. J. Eur. Ceram. Soc. 19, 1243 (1999)CrossRefGoogle Scholar
14.Yimnirun, R., Ananta, S., Meechoowas, E., Wongsaenmai, S.Effects of uniaxial stress on dielectric properties of lead magnesium niobate-lead zirconate titanate ceramics. J. Phys. D: Appl. Phys. 36, 1615 (2003)CrossRefGoogle Scholar
15.Suchanicz, J., Mercurio, J.P., Said, S.Axial pressure effect on dielectric and ferroelectric properties of K0.5Bi0.5TiO3 ceramic. Ferroelectrics 290, 169 (2003)CrossRefGoogle Scholar
16.Suchanicz, J., Mercurio, J.P., Marchet, P., Kruzina, T.V.Axial pressure influence on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 ceramic. Phys. Status Solidi B 225, 459 (2001)3.0.CO;2-#>CrossRefGoogle Scholar
17.Smolenskii, G.A., Agranovskaya, A.I.Dielectric polarization of a number of complex compounds. Fiz. Tverd. Tela 1, 1562 (1959)Google Scholar
18.Shrout, T.R., Zhang, S.J.Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111 (2007)CrossRefGoogle Scholar
19.Jones, G.O., Thomas, P.A.Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr., Sect. B: Struct. Sci. 58, 168 (2002)CrossRefGoogle Scholar
20.Roleder, K., Franke, I., Glazer, A.M., Thomas, P.A., Miga, S., Suchanicz, J.The piezoelectric effect in Na0.5Bi0.5TiO3 ceramics. J. Phys. Condens. Matter 14, 5399 (2002)CrossRefGoogle Scholar
21.Spreitzer, M., Valant, M., Suvorov, D.Sodium deficiency in Na0.5Bi0.5TiO3. J. Mater. Chem. 17, 1 (2007)CrossRefGoogle Scholar
22.Suchanicz, J., Kruzina, V.The effect of axial pressure on domain state and dielectric properties of Na0.5Bi0.5TiO3 and related materials. Ferroelectrics 317, 109 (2005)CrossRefGoogle Scholar
23.Molak, A., Suchanicz, J.Electric properties of ceramic Na0.5Bi0.5TiO3 under axial pressure. Ferroelectrics 189, 53 (1996)CrossRefGoogle Scholar
24.Suchanicz, J.Axial pressure effect on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3. J. Phys. Chem. Solids 62, 1271 (2001)CrossRefGoogle Scholar
25.König, J., Jančar, B., Suvorov, D.New Na0.5Bi0.5TiO3–NaTaO3-based perovskite ceramics. J. Am. Ceram. Soc. 90, 3621 (2007)CrossRefGoogle Scholar
26.Spreitzer, M., König, J., Jančar, B., Suvorov, D.Enhanced tunable characteristics of the Na0.5Bi0.5TiO3–NaTaO3 relaxor-type system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2617 (2007)CrossRefGoogle ScholarPubMed
27.König, J., Spreitzer, M., Jančar, B., Suvorov, D.Structural and dielectric properties of the Na0.5Bi0.5TiO3–NaTaO3 ceramic system. Ceram. Trans. 204, 121 (2009)CrossRefGoogle Scholar
28.Lein, H.L., Andersen, Ø.S., Vullum, P.E., Lara-Curzio, E., Holmestad, R., Einarsrud, M-A., Grande, T.Mechanical properties of mixed conducting La0.5Sr0.5Fe1–xCoxO3–delta (0 ≤ x ≤ 1) materials. J. Solid State Electrochem. 10, 635 (2006)CrossRefGoogle Scholar
29.Robels, U., Arlt, G.Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73, 3454 (1993)CrossRefGoogle Scholar
30.Aizu, K.Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 27, 387 (1969)CrossRefGoogle Scholar
31.Bondarenko, E.I., Topolov, V.Y., Turik, A.V.The role of 90-degrees domain-wall displacements in forming physical-properties of perovskite ferroelectric ceramics. Ferroelectr. Lett. 13, 13 (1991)CrossRefGoogle Scholar
32.Hiruma, Y., Nagata, H., Takenaka, T.Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009)CrossRefGoogle Scholar
33.Ulinzheyev, A.V., Fesenko, E.G., Smotrakov, V.G.Twinning in ferroelastic sodium tantalate crystals. Ferroelectrics 111, 261 (1990)CrossRefGoogle Scholar
34.Kounga, A.B., Granzow, T., Aulbach, E., Hinterstein, M., Rödel, J.High-temperature poling of ferroelectrics. J. Appl. Phys. 104, 024116 (2008)CrossRefGoogle Scholar