Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T13:51:22.870Z Has data issue: false hasContentIssue false

Ultrafast dynamic reflectivity of vanadium pentoxide

Published online by Cambridge University Press:  31 January 2011

Gregory J. Taft
Affiliation:
Department of Physics & Astronomy, University of Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481
Matthew T. Newby
Affiliation:
Department of Physics & Astronomy, University of Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481
Joel J. Hrebik
Affiliation:
Department of Physics & Astronomy, University of Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481
Marshall Onellion
Affiliation:
Department of Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706
Thomas F. George*
Affiliation:
Office of the Chancellor and Center for Nanoscience, Departments of Chemistry & Biochemistry and Physics & Astronomy, University of Missouri—St. Louis, St. Louis, Missouri 63121
Dániel Szentesi
Affiliation:
Department of Experimental Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
Sándor Szatmári
Affiliation:
Department of Experimental Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
László Nánai
Affiliation:
Department of Experimental Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
*
b) Address all correspondence to this author. e-mail: tfgeorge@umsl.edu
Get access

Abstract

The ultrafast dynamic reflectivity of vanadium pentoxide is measured using 40 fs pulses from a self-mode-locked Ti:sapphire laser. The laser pulses excite acoustic vibrations at wave numbers of 145 and 103 cm−1. The amplitudes of the induced oscillations depend strongly on the orientation between the linear polarization of the laser pulses and the crystal axes, with the largest oscillations observed for an orientation of 45°. The higher-frequency oscillation is induced immediately upon arrival of the laser pulse, while the lower-frequency oscillation appears a few picoseconds later. The oscillations persist for approximately 10 ps after the arrival of the pulse. The oscillations are attributed to transverse acoustic modes propagating along the a-axis of the crystal.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Julien, C., Guesdon, J.P., Gorenstein, A., Khelfa, A.Ivanov, I.: The growth of V2O5 flash-evaporated films. J. Mater. Sci. Lett. 14, 934 1995CrossRefGoogle Scholar
2Parker, J.C., Lam, D.J., Xu, Y.N.Ching, W.Y.: Optical properties of vanadium pentoxide determined from ellipsometry and band-structure calculations. Phys. Rev. B 42, 5289 1990CrossRefGoogle ScholarPubMed
3Karakotsou, Ch., Kalmiros, J.A., Hanias, M.P., Anagnostopoulos, A.N.Spyridelis, J.: Nonlinear electrical conductivity of V2O5 single crystals. Phys. Rev. B 45, 11627 1992CrossRefGoogle ScholarPubMed
4Abello, L., Husson, E., Repelin, Y.Lucazeau, G.: Vibrational spectra and valence force field of crystalline V2O5. Spectrochim. Acta, Part A 39, 641 1983CrossRefGoogle Scholar
5Ueda, Y.: Vanadate family as spin-gap systems. Chem. Mater. 10, 2653 1998CrossRefGoogle Scholar
6Liu, Z., Fang, G., Wang, Y., Bai, Y.Yao, K.: Laser-induced coloration of V2O5. J. Phys. D: Appl. Phys. 33, 2327 2000CrossRefGoogle Scholar
7Losurdo, M., Barreca, D., Bruno, G.Tondello, E.: Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films. Thin Solid Films 384, 58 2001CrossRefGoogle Scholar
8Suemoto, T., Nakajima, M., Aiba, M., Isob, M.Ueda, Y.: Transient phase change induced by femtosecond light pulses in the spin ladder system α′-NaV2O5. Solid State Commun. 132, 577 2004CrossRefGoogle Scholar
9Raible, I., Burghard, M., Schlecht, U., Yasuda, A.Vossmeyer, T.: V2O5 nanofibres: Novel gas sensors with extremely high sensitivity and selectivity to amines. Sens. Actuators, B 106, 730 2005Google Scholar
10Nánai, L., Vajtai, R.Hevesi, I.: Metal oxide layer growth under laser erradiation. Thin Solid Films 227, 13 1993CrossRefGoogle Scholar
11Tipton, A.L., Passerini, S., Owens, B.B.Smyrl, W.H.: Performance of lithium/V2O5 xerogel coin cells. J. Electrochem. Soc. 143, 3473 1996CrossRefGoogle Scholar
12Cavalleri, A., Tóth, Cs., Siders, C.W., Squier, J.A., Raksi, F., Forget, P.Keiffer, J.C.: Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 2001CrossRefGoogle ScholarPubMed
13Stefanovich, G.B., Pergament, A.L.Kazakova, E.L.: Electrical switching in metal-insulator-metal structures based on hydrated vanadium pentoxide. Tech. Phys. Lett. 26, 478 2000CrossRefGoogle Scholar
14Yan, Y.Nelson, K.A.: Impulsive stimulated light scattering. I. General theory. J. Chem. Phys. 87, 6240 1987Google Scholar
15Cho, G.C., Kütt, W.Kurz, H.: Subpicosecond time-resolved coherent-phonon oscillations in GaAs. Phys. Rev. Lett. 65, 764 1990CrossRefGoogle Scholar
16Trebino, R.: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses Kluwer Academic Publishers Dordrecht, The Netherlands 2002Google Scholar
17George, T.F., Taft, G.J., Lauko, I.G.Nánai, L.: Structural (phase) changes in semi-conductors. Bull. Am. Phys. Soc. 47(1), 474 2002Google Scholar
18Nánai, L., Szatmári, S., Taft, G.J.George, T.F.: New trends and results in fs-laser-driven materials processing. Abstracts of the XIth International Conference on Laser-Matter Interactions (St. Petersburg, Russia) 2003 40CrossRefGoogle Scholar
19Nánai, L., Szatmári, S., Taft, G.J.George, T.F.: New trends and results in fs-laser-driven materials processing. Abstracts of the Xth International Conference on Laser-Assisted Micro- and Nanotechnologies (St. Petersburg, Russia) 2003 I-4CrossRefGoogle Scholar