Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T17:10:54.924Z Has data issue: false hasContentIssue false

The transport properties of activated carbon fibers

Published online by Cambridge University Press:  31 January 2011

S.L. di Vittorio
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M.S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. Endo
Affiliation:
Department of Electrical Engineering, Faculty of Engineering, Shinshu University, Nagano 380, Japan
J-P. Issi
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
L. Piraux
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
V. Bayot
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transport properties of isotropic pitch-based carbon fibers with surface area 1000 m2/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity, and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

References

1Endo, M., Okada, Y., and Nakamura, H., Synth. Metals 34, 739 (1989).CrossRefGoogle Scholar
2Tanahashi, I., Yoshida, A., and Nishina, A., Carbon 28, 477 (1990).CrossRefGoogle Scholar
3Yoshida, A., Tanahashi, I., Takeuchi, Y., and Nishino, A., IEEE Transactions on components, hybrids and manufacturing technology, CHMT-10 1, 100 (1987).CrossRefGoogle Scholar
4Huttepain, M. and Oberlin, A., Carbon 28, 103 (1990).CrossRefGoogle Scholar
5Bansal, R. P., Donnet, J-B., and Stoeckli, F., Active Carbon (Marcel Dekker, New York, 1988).Google Scholar
6Jenkins, G. M. and Kawamura, K., Nature 231, 175 (1971).CrossRefGoogle Scholar
7Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments (Springer-Verlag, 1988).CrossRefGoogle Scholar
8Piraux, L., Issi, J-P., and Coopmans, P., Measurement 5, 2 (1987).CrossRefGoogle Scholar
9Endo, M. (private communication).Google Scholar
10Mott, N., Conduction in non-crystalline materials (Clarendon Press, Oxford, 1987).Google Scholar
11Endo, M., Kato, A., Ueno, H., and Shiraishi, M., Transaction of the Institute of Electrical Engineers of Japan 108-A, No. 7, 279 (1988).Google Scholar
12Baker, D. F. and Bragg, R. H., Phys. Rev. B 28, 2219 (1983).CrossRefGoogle Scholar
13Robson, D., Assabghy, F. Y. I., Cooper, E. G., and Ingram, D. J. E., J. Phys. D6, 1822 (1973).Google Scholar
14Hambourger, P. D., Appl. Phys. Comm. 5, 223 (1986).Google Scholar
15Sivan, U., Entin-Wohlmann, O., and Imry, Y., Phys. Rev. Lett. 60, 1566 (1988).CrossRefGoogle Scholar
16Heremans, J. and Beetz, C. P., Jr., Phys. Rev. B 32, 1981 (1985).CrossRefGoogle Scholar
17Endo, M., Tamagawa, I., and Koyama, T., Jpn. J. Appl. Phys. 16, 1771 (1977).CrossRefGoogle Scholar