Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-06T14:37:11.320Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy of Martensitic Transformation in Xe-implanted Austenitic 304 Stainless Steel

Published online by Cambridge University Press:  01 July 2005

Guoqiang Xie*
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0003, Japan
Minghui Song
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0003, Japan
Kazutaka Mitsuishi
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0003, Japan
Kazuo Furuya
Affiliation:
High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0003, Japan
*
a)Address all correspondence to this author. e-mail: Guoqiang.XIE@nims.go.jp
Get access

Abstract

Thin film specimens of austenitic 304 stainless steel implanted with 100 keV Xe ions at room temperature were investigated. Microstructural evolution and phase transformation were characterized and analyzed in situ with conventional and high-resolution transmission electron microscopy. The phase transformation in a sequence from austenitic γ face-centered cubic (fcc) to hexagonal close-packed (hcp), and then to a martensitic α body-centered cubic (bcc) structure was observed in the implanted specimens. The fraction of the induced α(bcc) phase increased with increasing Xe ion fluence. Orientation relationships between the induced α(bcc) phase and austenitic γ(fcc) matrix were determined to be (011)α//(111)γ and [111]α//[011]γ. The relationship was independent of the induced process of the martensitic phase transformation for austenitic 304 stainless steel specimen, in agreement with the Kurdjumov–Sachs (K-S) rule. It is suggested that the phase transformation is induced mainly by the formation of the highly pressurized Xe precipitates, which generate a large stress level in stainless steels.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mitsuishi, K., Kawasaki, M., Takeguchi, M. and Furuya, K.: Determination of atomic positions in a solid Xe precipitate embedded in an Al matrix. Phys. Rev. Lett. 82, 3082 (1999).CrossRefGoogle Scholar
2Song, M., Mitsuishi, K. and Furuya, K.: Electron energy loss spectroscopy and energy-filtered imaging of Xe cavities embedded in Al at 423 and 473 K. Micron. 30, 129 (1999).CrossRefGoogle Scholar
3Templier, C., Garem, H. and Rivier, J.P.: Transmission electron microscope study of xenon implanted into metals. Philos. Mag. A 53, 667 (1986).CrossRefGoogle Scholar
4Gustiono, D., Sakaguchi, N., Shibayama, T., Kinoshita, H. and Takahashi, H.: Plane and cross-sectional TEM observation to clarify the effect of damage region by ion implantation on induced phase transformation in austenitic 301 stainless steel. Mater. Trans. 45, 65 (2004).CrossRefGoogle Scholar
5Mottu, N., Vayer, M. and Erre, R.: Xe and Mo ion implantation on austenitic stainless steel: Structural modification. Surf. Coat. Technol. 183, 165 (2004).CrossRefGoogle Scholar
6Xie, G.Q., Song, M., Mitsuishi, K. and Furuya, K.: Orientation of γ to α transformation in Xe-implanted austenitic 304 stainless steel. J. Nucl. Mater. 281, 80 (2000).CrossRefGoogle Scholar
7Song, M., Mitsuishi, K. and Furuya, K.: Morphologies of metastable inert gas precipitates in aluminum observed with in situ HRTEM. Mater. Sci. Eng. A 304–306, 135 (2001).CrossRefGoogle Scholar
8Sakamoto, I., Hayashi, N., Furubayashi, B. and Tanoue, H.: Ion-induced phase transformation in type 304 austenitic stainless steel by rare-gas ion irradiation. J. Appl. Phys. 68, 4508 (1990).CrossRefGoogle Scholar
9Johnson, E.: Ion implantation induced martensitic transformations in metals. Defect Diffus. Forum 57–58, 241 (1988).CrossRefGoogle Scholar
10Johnson, E., Johansen, A., Sarholt-Kristensen, L., Gråbæk, L., Hayashi, N. and Sakamoto, I.: Mossbauer and TEM study of martensitic transformations in ion implanted 17/7 stainless steel. Nucl. Instrum. Meth. B 19/20, 171 (1987).CrossRefGoogle Scholar
11Hayashi, N., Sakamoto, I. and Takahashi, T.: Phase transformation in helium ion irradiated 316 stainless steel. J. Nucl. Mater. 128/129, 756 (1984).CrossRefGoogle Scholar
12Johnson, E., Johansen, A., Sarholt-Kristensen, L., Roy-Poulsen, H. and Christensen, A.: Ion implantation and martensitic transformations in a 17/7 stainless steel. Nucl. Instrum. Meth. B 7/8, 212 (1985).CrossRefGoogle Scholar
13Johnson, E., Littmark, U., Johansen, A. and Christodoulides, C.: Martensite transformation in antimony implanted stainless steel. Philos. Mag. A 45, 803 (1982).CrossRefGoogle Scholar
14Wang, Q., Ogiso, H., Nakano, S., Akedo, J. and Ishikawa, H.: Martensitic transformation and the stress induced by 3 MeV ion implantation in an austenite stainless steel sheet. Nucl. Instrum. Meth. B 206, 118 (2003).CrossRefGoogle Scholar
15Stahl, B., Kankeleit, E. and Walter, G.: Implantation induced phase formation in stainless steel. Nucl. Instrum. Meth. B 211, 227 (2003).CrossRefGoogle Scholar
16Lopez, M.F., Gutierrez, A., Perez, F.J., Hierro, M.P. and Pedraza, F.: Soft x-ray absorption spectroscopy study of the effects of Si, Ce, and Mo ion implantation on the passive layer of AISI 304 stainless steel. Corros. Sci. 45, 2043 (2003).CrossRefGoogle Scholar
17Gustiono, D., Sakaguchi, N., Shibayama, T., Kinoshita, H. and Takahashi, H.: Nano-scale phase transformation in Ti-implanted austenitic 301 stainless steel. J. Electron Microsc. 52, 449 (2003).CrossRefGoogle ScholarPubMed
18Perez, F.J., Hierro, M.P., Gomez, C., Martinez, L. and Viguri, P.G.: Ion implantation as a surface modification technique to improve localized corrosion of different stainless steels. Surf. Coat. Technol. 155, 250 (2002).CrossRefGoogle Scholar
19Johnson, E.: Martensitic transformations in ion implanted stainless steels, in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J.A., Børgesen, P., Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 759.Google Scholar
20Nishiyama, Z.: Martensitic Transformations (Academic Press, New York, 1978).Google Scholar
21Fayeulle, S., Treheux, D. and Esnouf, C.: TEM characterization of a nitrogen implanted austenitic stainless steel. Appl. Surf. Sci. 25, 288 (1986).CrossRefGoogle Scholar
22Furuya, K., Piao, M., Ishikawa, N. and Saito, T.: High resolution transmission electron microscopy of defect clusters in aluminum during electron and ion irradiation at room temperature, in Microstructure Evolution During Irradiation, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and de la Rubia, T. Diaz (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, 1997), p. 331.Google Scholar
23Ziegler, J.F., Biersack, J.P. and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
24Reed, R.P.: The spontaneous martensitic transformations in 18%Cr, 8%Ni steels. Acta Metall. 10, 865 (1962).CrossRefGoogle Scholar
25Lagneborg, R.: The martensite transformation in 18%Cr–8%Ni steels. Acta Metall. 12, 823 (1964).CrossRefGoogle Scholar
26Kumar, B. Ravi, Singh, A.K., Das, S. and Bhattacharya, D.K.: Cold rolling texture in AISI 304 stainless steel. Mater. Sci. Eng. A 364, 132 (2004).CrossRefGoogle Scholar
27Grigull, S.: Tensile deformation induced texture transformation in austenitic stainless steel. Text. Microstruct. 35, 153 (2003).CrossRefGoogle Scholar
28Mangonon, P.L. and Thomas, G.: The martensite phases in 304 stainless steel. Metall. Trans. 1, 1577 (1970).CrossRefGoogle Scholar
29Venables, J.A.: The martensitic transformation in stainless steel. Philos. Mag. 7, 35 (1962).CrossRefGoogle Scholar
30Cina, B.: A transitional h.c.p. phase in the γ→α transformation in certain Fe-base alloys. Acta Metall. 6, 748 (1958).CrossRefGoogle Scholar
31Song, M., Xie, G.Q., Mitsuishi, K., and Furuya, K.: A metastable hcp phase in transformation from γ to α phase induced by ion implantation in austenitic 304 stainless steel. (unpublished).Google Scholar
32Johnson, E., Grabek, L., Johansen, A., Sarholt-Kristensen, L., Borgesen, P., Scherzer, B.M.U., Hayashi, N. and Sakamoto, I.: Martensitic transformations in 304 stainless steel after implantation with helium, hydrogen and deuterium. Nucl. Instrum. Meth. B 39, 567 (1989).CrossRefGoogle Scholar
33Ronchi, C.: Extrapolated equation of state for rare gases at high temperatures and densities. J. Nucl. Mater. 96, 314 (1981).CrossRefGoogle Scholar
34Novak, C.J.: Handbook of Stainless Steels (McGraw-Hill, New York, 1977).Google Scholar