Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T21:25:48.988Z Has data issue: false hasContentIssue false

Tilted domain growth of metalorganic chemical vapor (MOCVD)-grown ZnO(0001) on α-Al2O3(0001)

Published online by Cambridge University Press:  31 January 2011

C.M. Wang*
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
L.V. Saraf
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
T.L. Hubler
Affiliation:
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352
P. Nachimuthu
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
*
a)Address all correspondence to this author. e-mail: chongmin.wang@pnl.gov
Get access

Abstract

ZnO grown on α-Al2O3(0001) generally possesses an orientation such that α-Al2O3(0001) is parallel to ZnO(0001) and two in-plane domains nucleate, so that α-Al2O3[11¯20] is parallel to ZnO[11¯20] and/or α-Al2O3[11¯20] is parallel to ZnO[10¯10]. In this paper, we report a new growth mode for ZnO grown on α-Al2O3(0001) using metalorganic chemical vapor deposition (MOCVD). We find that α-Al2O3[11¯20] is parallel to ZnO[10¯10], but the (0001) plane of ZnO is tilted relative to the (0001) plane of α-Al2O3 such that ZnO(0001) is almost parallel to the α-Al2O3(¯1104) plane. This orientation reduces the extent of lattice mismatch. The interface between ZnO and α-Al2O3 is abrupt and possesses periodic dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fan, Z.Y.Lu, J.G.: Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol. 5, 1561 2005CrossRefGoogle ScholarPubMed
2Triboulet, R.Perrière, J.: Epitaxial growth of ZnO films. Prog. Crystal Growth Charact. Mater. 47, 65 2003CrossRefGoogle Scholar
3Liu, G.L., Cao, Q., Deng, J.X., Xing, P.F., Tian, Y.F., Chen, Y.X., Yan, S.S.Mei, L.M.: High T c ferromagnetism of Zn(1−x )CoxO diluted magnetic semiconductors grown by oxygen plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 90, 052504 2007CrossRefGoogle Scholar
4Venkatesan, M., Fitzgerald, C.B., Lunney, J.G.Coey, J.M.D.: Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett. 93(17), 177206 2004CrossRefGoogle ScholarPubMed
5Kittilstved, K.R., Schwartz, D.A., Tuan, A.C., Heald, S.M., Chambers, S.A.Gamelin, D.R.: Direct kinetic correlation of carriers and ferromagnetism in Co2+:ZnO. Phys. Rev. Lett. 97, 037203 2006CrossRefGoogle ScholarPubMed
6Heo, Y.W., Ivill, M.P., Ip, K., Norton, D.P., Pearton, S.J., Kelly, J.G., Rairigh, R., Hebard, A.F.Steiner, T.: Effects of high-dose Mn implantation into ZnO grown on sapphire. Appl. Phys. Lett. 84, 2292 2004CrossRefGoogle Scholar
7Kundaliya, D.C., Ogale, S.B., Lofland, S.E., Dhar, S., Metting, C.J., Shinde, S.R., Ma, Z., Varughese, B., Ramanujachary, K.V., Salamanca-Riba, L.Venkatesan, T.: On the origin of high-temperature ferromagnetism in the low-temperature–processed Mn–Zn–O system. Nat. Mater. 3, 709 2004CrossRefGoogle ScholarPubMed
8Newton, M.C.Warburton, P.A.: ZnO tetrapod nanocrystals. Mater. Today 10(5), 50 2007CrossRefGoogle Scholar
9Wang, Z.L.Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 2006CrossRefGoogle ScholarPubMed
10Liu, C., Chang, S.H., Noh, T.W., Abouzaid, M., Ruterana, P., Lee, H.H., Kim, D.W.Chung, J.S.: Initial growth behavior and resulting microstructural properties of heteroepitaxial ZnO thin films on sapphire 0001 substrate. Appl. Phys. Lett. 90, 011906 2007CrossRefGoogle Scholar
11Ying, M., Du, X., Mei, Z., Zeng, Z., Zheng, H., Wang, Y., Jia, J., Zhang, Z.Xue, Q.: Effect of sapphire substrate nitridation on the elimination of rotation domains in ZnO epitaxial films. J. Phys. D 37, 3058 2004CrossRefGoogle Scholar
12Kang, H.S., Pang, S.S., Kim, J.W., Kim, G.H., Kim, J.H., Lee, S.Y., Li, Y., Wang, H.Jia, Q.X.: The role of a ZnO buffer layer in the growth of ZnO thin film on Al2O3 substrate. Superlattices Microstruct. 40, 501 2006CrossRefGoogle Scholar
13Hong, S-K., Ko, H-J., Chen, Y.Yao, T.: Defect characterization in epitaxial ZnO/epi-GaN/Al2O3 heterostructures: Transmission electron microscopy and triple-axis x-ray diffractometry. J. Cryst. Growth 209, 537 2000CrossRefGoogle Scholar
14Chen, Y., Hong, S., Ko, H., Krishner, V., Wenisch, H., Yao, T., Inaba, K.Segawa, Y.: Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch. Appl. Phys. Lett. 78, 3352 2001CrossRefGoogle Scholar
15Fu, Z., Lin, B., Liao, G.Wu, Z.: The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates. J. Cryst. Growth 193, 316 1998CrossRefGoogle Scholar
16Vispute, R.D., Talyansky, V., Choopun, S., Sharma, R.P., Venkatesan, T., He, M., Tang, X., Halpen, J.B., Spencer, M.G., Li, Y.X., Salamanca-Riba, L.G., Iliadis, A.A.Jones, K.A.: Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 73, 348 1998CrossRefGoogle Scholar
17Kang, H.S., Pang, S.S., Kim, J.W., Kim, G.H., Kim, J.H., Lee, S.Y., Li, Y., Wang, H.Jia, Q.X.: The role of a ZnO buffer layer in the growth of ZnO thin film on Al2O3 substrate. Superlattices Microstruct. 40, 501 2006CrossRefGoogle Scholar
18Abouzaid, M., Tailpied, P., Ruterana, P., Liu, C., Xiao, B., Cho, S-J., Moon, Y-T.Morkoç, H.: A TEM study of ZnO layers deposited by MBE and RF magnetron sputtering. Superlattices Microstruct. 39, 387 2006CrossRefGoogle Scholar
19Yoshino, Y., Inoue, K., Takeuchi, M.Ohwada, K.: Effects of interface microstructure in crystallization of ZnO thin films prepared by radio frequency sputtering. Vacuum 51(4), 601 1998CrossRefGoogle Scholar
20Narayan, J., Dovidenko, K., Sharma, A.K.Oktyabrsky, S.: Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures. J. Appl. Phys. 84(5), 2597 1998CrossRefGoogle Scholar
21Du, X.L., Murakami, M., Iwaki, H.Yoshikawa, A.: Complete elimination of multi-angle rotation domains in ZnO epilayers grown on 0001 sapphire substrate. Phys. Status Solidi A 192, 183 20023.0.CO;2-K>CrossRefGoogle Scholar
22Du, X.L., Murakami, M., Iwaki, H., Ishitani, Y.Yoshikawa, A.: Effects of sapphire 0001 surface modification by gallium pre-exposure on the growth of high-quality epitaxial ZnO film. Jpn. J. Appl. Phys. 41, L1043 2002CrossRefGoogle Scholar
23Kilaas, R.: MacTempasX. Total Resolution LLC, Berkeley, CA., Available at: http://www.totalresolution.com.Google Scholar