Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T16:05:43.464Z Has data issue: false hasContentIssue false

Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization

Published online by Cambridge University Press:  28 September 2012

Sonia S. Mathew
Affiliation:
Department of Chemical Engineering, The City College of New York, New York 10031
Stephen Ma
Affiliation:
Department of Chemical Engineering, The City College of New York, New York 10031
Ilona Kretzschmar*
Affiliation:
Department of Chemical Engineering, The City College of New York, New York 10031
*
a)Address all correspondence to this author. e-mail: kretzschmar@ccny.cuny.edu
Get access

Abstract

The increased use of viscous electrolytes in dye-sensitized solar cells (DSSCs) has revitalized the interest in three-dimensionally ordered macroporous (3DOM) structures as potential electrodes. The simplest approach to a 3DOM structure, such as inverse opals, is colloidal assembly followed by precursor infiltration and calcination. However, current assembly methods are often optimized for very narrow particle size ranges due to the colloidal forces specific to the method used. Using five particle sizes, ranging from 0.5 to 10 μm, we have studied the particle-size dependence of six commonly used colloidal assembly methods and its effect on the resulting inverse opal structure using scanning electron microscopy and Fast Fourier Transforms. Our results indicate a clear correlation between particle size and colloidal assembly method. The information provided by our study will enable systematic studies on inverse opal TiO2 electrodes with various pore sizes, in which the influence of the inverse opal preparation methods used is minimized.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Douglas, D.L. and Birk, J.R.: Secondary batteries for electrical energy storage. Annu. Rev. Energy 5(1), 6188 (1980).CrossRefGoogle Scholar
Srinivasan, S., Mosdale, R., Stevens, P., and Yang, C.: Fuel cells: Reaching the era of clean and efficient power generation in the twenty-first century. Annu. Rev. Energy Env. 24(1), 281328 (1999).Google Scholar
Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol., C 4, 145 (2003).CrossRefGoogle Scholar
O’Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
Cao, Y.M., Bai, Y., Yu, Q.J., Cheng, Y.M., Liu, S., Shi, D., Gao, F.F., and Wang, P.: Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio) thiophene conjugated bipyridine. J. Phys. Chem. C 113, 6290 (2009).CrossRefGoogle Scholar
Yum, J.H., Baranoff, E., Wenger, S., Nazeeruddin, M.K., and Grätzel, M.: Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 4, 842 (2011).Google Scholar
Bisquert, J. and Vikhrenko, V.S.: Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J. Phys. Chem. B 108(7), 23132322 (2004).CrossRefGoogle Scholar
Galoppini, E., Rochford, J., Chen, H., Saraf, G., Lu, Y., Hagfeldt, A., and Boschloo, G.: Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J. Phys. Chem. B 110(33), 1615916161 (2006).CrossRefGoogle ScholarPubMed
Feldt, S.M., Wang, G., Boschloo, G., and Hagfeldt, A.: Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couple. J. Phys. Chem. C 115(43), 21500 (2011).CrossRefGoogle Scholar
Wang, M.K., Liu, J.Y., Cevey-Ha, N.L., Moon, S.J., Liska, P., Humphrey-Baker, R., Moser, J.E., Grätzel, C., Wang, P., Zakeeruddin, S.M., and Grätzel, M.: High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today 5, 169 (2010).CrossRefGoogle Scholar
CRC Handbook of Chemistry and Physics, Lide, D.R., ed; CRC Press LLC: New York, 1998.Google Scholar
Ultrapure(R) Ethylene Carbonate. Huntsman Tech. Bull. (2007).Google Scholar
Mihi, A., Calvo, M.E., Anta, J.A., and Miguez, H.: Spectral response of opal-based dye-sensitized solar cells. J. Phys. Chem. C 112(1), 1317 (2007).Google Scholar
Stein, A.: Sphere templating methods for periodic porous solids. Microporous Mesoporous Mater. 45, 227239 (2001).Google Scholar
Velev, O.D. and Kaler, E.W.: Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. Adv. Mater. 12(7), 531534 (2000).3.0.CO;2-S>CrossRefGoogle Scholar
Xia, Y., Gates, B., Yin, Y., and Lu, Y.: Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12(10), 693713 (2000).Google Scholar
Colvin, V.L.: From opals to optics: Colloidal photonic crystals. MRS Bull. 26(8), 637641 (2001).Google Scholar
Meseguer, F., Blanco, A., Miguez, H., Garcia-Santamaria, F., Ibisate, M., and Lopez, C.: Synthesis of inverse opals. Colloids Surf., A 202, 281290 (2002).CrossRefGoogle Scholar
Bozhko, S.I., Chaika, A.N., Emelchenko, G.A., Masalov, V.M., Ionov, A.M., Gruzintsev, A.N., Mikhailov, G.M., and Medvedev, B.K.: Mono- and multilayered opalline superlattices: Application to nanotechnology of 2D ordered array of nanoobjects and 3D metalattices. Appl. Surf. Sci. 234(1–4), 93101 (2004).CrossRefGoogle Scholar
Goncalves, M.C., Bras, J., and Almeida, R.M.: Process optimization of sol-gel derived colloidal photonic crystals. J. Sol-Gel Sci. Technol. 42, 135143 (2007).CrossRefGoogle Scholar
Waterhouse, G.I.N. and Waterland, M.R.: Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 26, 356368 (2007).Google Scholar
Whitmore, R.L.: The sedimentation of suspensions of spheres. Br. J. Appl. Phys. 6, 239245 (1955).Google Scholar
Maude, A.D. and Whitmore, R.L.: A generalized theory of sedimentation. Br. J. Appl. Phys. 9, 477482 (1958).Google Scholar
Mayoral, R., Requena, J., Moya, J.S., López, C., Cintas, A., Miguez, H., Meseguer, F., Vázquez, L., Holgado, M., and Blanco, A.: 3D long-range ordering in SiO2 submicrometer sphere sintered superstructure. Adv. Mater. 9(3), 257260 (1997).CrossRefGoogle Scholar
Liu, Y., Wang, S., Lee, J.W., and Kotov, N.A.: A floating self-assembly route to colloidal crystal templates for 3D cell scaffolds. Chem. Mater. 17(20), 49184924 (2005).Google Scholar
Rogach, A.L., Kotov, N.A., Koktysh, D.S., Ostrander, J.W., and Ragoisha, G.A.: Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high quality opals. Chem. Mater. 12(9), 27212726 (2000).CrossRefGoogle Scholar
Prevo, B.G. and Velev, O.D.: Controlled, rapid deposition of structured coating from micro- and nanoparticle suspensions. Langmuir 20, 20992107 (2004).Google Scholar
Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L.: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 21322140 (1999).Google Scholar
Wong, S., Kitaev, V., and Ozin, G.: Colloidal crystal films: Advances in universality and perfection. J. Am. Chem. Soc. 125, 1558915598 (2003).Google Scholar
Shimmin, R.G., DiMauro, A.J., and Braun, P.V.: Slow vertical deposition of colloidal crystals: A Langmuir-Blodgett process? Langmuir 22, 65076513 (2006).Google Scholar
Hatton, B., Mishchenko, L., Davis, S., Sandhage, K.H., and Aizenberg, J.: Assembly of large-area, highly ordered, crack-free inverse opal films. PNAS 107(23), 1035410359 (2010).CrossRefGoogle ScholarPubMed
Kumnorkaew, P. and Gilchrist, J.F.: Effect of nanoparticle concentration on the convective deposition of binary suspensions. Langmuir 25(11), 60706075 (2009).CrossRefGoogle ScholarPubMed
Murray, C.B., Kagan, C.R., and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Res. 30, (2000). pp. 545–610.Google Scholar
Scolan, E. and Sanchez, C.: Synthesis and characterization of surface-protected nanocrystalline titania particles. Chem. Mater. 10, 32173223 (1998).Google Scholar
Liu, W., Zou, B., Zhao, J., and Cui, H.: Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity. Thin Solid Films 518(17), 49234927 (2010).Google Scholar
Imhof, A. and Pine, D.J.: Ordered macroporous materials by emulsion templating. Nature 389, 948 (1997).CrossRefGoogle Scholar
Holland, B.T., Blanford, C.F., and Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538 (1998).Google Scholar
Wijnhoven, J.E.G.J. and Vos, W.L.: Preparation of photonic crystals made of air spheres in titania. Science 281, 802 (1998).CrossRefGoogle ScholarPubMed
Blanford, C.F., Carter, C.B., and Stein, A.: A method for determining void arrangements in inverse opals. J. Microsc. 216(3), 263287 (2004).Google Scholar
Palacios-Lidon, E., Juárez, B.H., Castillo-Martinez, E., and Lópex, C.: Optical and morphological study of disorder in opals. J. Appl. Phys. 97, 063502 (2005).Google Scholar
Sinitskii, A., Abramova, V., Laptinskaya, T., and Tretyakov, Y.D.: Domain mapping of inverse photonic crystals by laser diffraction. Phys. Lett. A 366, 516522 (2007).Google Scholar
Vickreva, O., Kalinina, O., and Kumacheva, E.: Colloid crystal growth under oscillatory shear. Adv. Mater. 12(2), 110112 (2000).3.0.CO;2-X>CrossRefGoogle Scholar