Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T01:47:14.064Z Has data issue: false hasContentIssue false

Thermomechanical detwinning of superconducting YBa2Cu3O7−x single crystals

Published online by Cambridge University Press:  31 January 2011

Debra L. Kaiser
Affiliation:
Institute for Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Frank W. Gayle
Affiliation:
Institute for Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Robert S. Roth
Affiliation:
Institute for Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Lydon J. Swartzendruber
Affiliation:
Institute for Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

A method for the complete removal of twins from single crystals of superconducting YBa2Cu3O7−x is described. The process depends on ferroelastic behavior found to exist in the phase, and should be generally applicable to the layered perovskite-type phases containing accommodation twins resulting from a tetragonal-to-orthorhombic transformation on cooling. The twin-free, superconducting single crystals will enable investigation of a–b anisotropy of properties as well as crystal structure determination without complication by the presence of microtwins.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Crabtree, G. W., Liu, J. Z., Umezawa, A., Kwok, W. K., Sowers, C. H., Malik, S. K., Veal, B. W., Lam, D. J., Brodsky, M. B., and Downey, J. W., Phys. Rev. B 36, 4021 (1987).CrossRefGoogle Scholar
2Megaw, H. D., Ferroelectricity in Crystals (Methuen, London, 1957), pp. 1013.Google Scholar
3Kaiser, D. L., Holtzberg, F., Scott, B. A., and McGuire, T. R., Appl. Phys. Lett. 51, 1040 (1987); D. L. Kaiser, F. Holtzberg, M. F. Chisholm, and T. K. Worthington, J. Cryst. Growth 85, 593 (1987).CrossRefGoogle Scholar
4Jorgensen, J.D., Beno, M. A., Hinks, D.G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
5Feldman, A., private communication.Google Scholar
6Iijima, S., Ichihashi, T., Kubo, Y., and Tabuchi, J., Jpn. J. Appl. Phys. 26, L1478 (1987).CrossRefGoogle Scholar
7Hoff, H.A., Singh, A.K., and Pande, C.S., Appl. Phys. Lett. 52, 669 (1988).CrossRefGoogle Scholar
8Strobel, P., Capponi, J. J., Chaillout, C., Marezio, M., and Tholence, J. L., Nature 327, 306 (1987).CrossRefGoogle Scholar
9Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Phys. Rev. B 36, 5719 (1987).CrossRefGoogle Scholar