Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T15:50:42.581Z Has data issue: false hasContentIssue false

Thermal quenching behavior of Er-doped silicon-rich SiO2 prepared by ion implantation

Published online by Cambridge University Press:  03 March 2011

C.S. Zhang*
Affiliation:
The Research Center of Semiconductor Functional Film Engineering Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
H.B Xiao
Affiliation:
The Research Center of Semiconductor Functional Film Engineering Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Y.J. Wang
Affiliation:
The Research Center of Semiconductor Functional Film Engineering Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Z.J. Chen
Affiliation:
The Research Center of Semiconductor Functional Film Engineering Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
X.L. Cheng
Affiliation:
The Research Center of Semiconductor Functional Film Engineering Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
F. Zhang
Affiliation:
The Research Center of Semiconductor Functional Film Engineering Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zcs1024@yahoo.com.cn
Get access

Abstract

Erbium and silicon were dual implanted into thermally grown SiO2 film on Si (110) substrates, followed by thermal treatment at 700–1200 °C for 30 min. The microstructure was studied by transmission electron microscope and x-ray diffraction. When the implanted films were annealed at T > 900 °C, the silicon nanocrystals (nc-Si) enwrapped by amorphous silicon (a-Si) could be observed. The thermal quenching behavior at λ = 1.535 μm and its relation with the annealling temperature were also investigated. With increasing annealing temperature, the portion of a-Si and the thermal quenching both decreased. Efficient luminescence from Er ions and weak intensity thermal quenching were obtained from the sample annealed at 1100 °C. The role of a-Si in non-radiative processes at T > 100 K is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Miniscalco, W.J.: Erbium-doped glasses for fiber amplifiers at 1500 nm. J. Lightwave Technol. 9 234 (1991).CrossRefGoogle Scholar
2.Polman, A.: Erbium implanted thin film photonic materials. J. Appl. Phys. 82 1 (1997).CrossRefGoogle Scholar
3.Rare-Earth Doped Semiconductors II, edited by Coffa, S., Polman, A. and Schwartz, R.N. (Mater. Res. Soc. Symp. Proc. 422, Pittsburgh, PA, 1996), p. 235Google Scholar
4.Franz, G., Priolo, F., Coffa, S., Polman, A. andCarnera, A.: Room-temperature electroluminescence from Er-doped crystalline Si. Appl. Phys. Lett. 64 2235 (1994).CrossRefGoogle Scholar
5.Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.H., Poate, J.M. andKimerling, L.C.: Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon. J. Appl. Phys. 70 2672 (1991).CrossRefGoogle Scholar
6.Coffa, S., Priolo, F., Franz, G., Bellani, V., Carnera, A. andSpinella, C.: Optical activation and excitation mechanisms of Er implanted in Si. Phys. Rev. B 48 11782 (1993).CrossRefGoogle ScholarPubMed
7.Palm, J., Gan, F., Michel, J. andKimerling, L.: Electroluminescence of erbium-doped silicon. Phys. Rev. B 54 17603 (1996).CrossRefGoogle ScholarPubMed
8.Kik, P., de Dood, M.J.A., Kikoin, K. andPolman, A.: Excitation and deexcitation of Er3+ in crystalline silicon. Appl. Phys. Lett. 70 1721 (1997).CrossRefGoogle Scholar
9.Shin, J.H., Kim, M., See, S. andLee, C.: Composition dependence of room temperature 1.54 μm Er3+ luminescence from erbium-doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Appl. Phys. Lett. 72 1092 (1998).CrossRefGoogle Scholar
10.Kik, P.G., Brongersma, M.L. andPolman, A.: Strong exciton-erbium coupling in Si nanocrystal-doped SiO2. Appl. Phys. Lett. 76 2325 (2000).Google Scholar
11.Chryssou, C.E., Pacifici, D., Vinciguerra, V., Priolo, F. andIacona, F.: Evidence of energy coupling between Si nanocrystals and Er3+ in ion-implanted silica thin films. Appl. Phys. Lett. 75 2011 (1999).CrossRefGoogle Scholar
12.Temkin, R.J.: An analysis of the radial distribution function of SIOx. J. Non-Cryst. Solids 17 215 (1975).CrossRefGoogle Scholar
13.Philipp, H.R.: Optical properties of non-crystalline Si, SiO, SiOx and SiO2 J. Phys. Chem. Solids 32 1935 (1971).CrossRefGoogle Scholar
14.Watanabe, H., Haga, K. andDavidson, B.N.: Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0< r<2) alloy system. Phys. Rev. B 40 1795 (1993).Google Scholar
15.Bruesch, P., Stockmeier, Th., Stucki, F. andBuffat, P.A.: Physical properties of semi-insulating polycrystalline silicon. I. Structure, electronic properties, and electrical conductivity. J. Appl. Phys. 73 7677 (1993).CrossRefGoogle Scholar
16.Tessler, L.R., Coffer, J.L. andJi, J.: Erbium environment in silicon nanoparticles. J. Non-Cryst. Solids 299–302 673 (2002).CrossRefGoogle Scholar
17.Chen, T.D., Platero, M., Opher-Lipson, M., Palm, J., Michel, J. andKimerling, L.C.: The temperature dependence of radiative and nonradiative processes at Er–O centers in Si. Phys. B 273–274 322 (1999).CrossRefGoogle Scholar
18.Shin, J.H., Serna, R., van den Hoven, G.N., Polman, A., van Sark, W.G.J.H.M. andVredenberg, A.M.: Luminescence quenching in erbium-doped hydrogenated amorphous silicon. Appl. Phys. Lett. 68 46 (1996).CrossRefGoogle Scholar
19.Lanzerstorfer, S., Palmmethofer, L., Jantsch, W. andStimmer, J.: On the environment of optically active Er in Si-electroluminescence devices. Appl. Phys. Lett. 72 809 (1998).CrossRefGoogle Scholar