Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T01:54:15.262Z Has data issue: false hasContentIssue false

Thermal properties of nanocrystalline Al composites reinforced by AlN nanoparticles

Published online by Cambridge University Press:  31 January 2011

Y.Q. Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
H.T. Cong*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
H.M. Cheng
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
*
a)Address all correspondence to this author. e-mail: htcong@imr.ac.cn
Get access

Abstract

To explore potential applications of nanocomposites for microelectronic packaging, the thermal properties were investigated on newly developed nanocrystalline Al composites reinforced by AlN nanoparticles. It was found that the thermal conductivity (TC) is reduced with increasing AlN volume fraction (Vp), since connectivity of Al matrix is decreased by introduction of the nanoparticles. Although AlN nanoparticles introduce thermal resistance, they still have significant contribution to the TC of the composite as high-TC inclusion. Particularly, a percolation behavior of AlN nanoparticles is thought to occur with the threshold at 23–30%. Measurements at elevated temperatures (∼500 °C) show almost no distinct degradation of TC relative to room temperature. Moreover, the coefficient of thermal expansion (CTE) is remarkably lowered as Vp increases, e.g., from 26 × 10−6 to 13.9 × 10−6 K−1, by raising Vp to 39%. Therefore, the nanocomposites may be applicable as electronic packaging material, due to the combination of acceptable TC and low CTE.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, L.C., Artz, B.E.: Thermal conductivity of metal-matrix composites. J. Appl. Phys. 77, 4954 1995CrossRefGoogle Scholar
2.Zweben, C.: Advances in composite materials for thermal management in electronic packaging. JOM 50, 47 1998CrossRefGoogle Scholar
3.Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692 1997CrossRefGoogle Scholar
4.Ibrahim, I.A., Mohamed, F.A., Lavernia, E.J.: Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 26, 1137 1991CrossRefGoogle Scholar
5.Lloyd, D.J.: Particle-reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39, 1 1994CrossRefGoogle Scholar
6.Hasselman, D.P.H., Johnson, L.F.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508 1987CrossRefGoogle Scholar
7.Hasselman, D.P.H., Donaldson, K.Y., Geiger, A.L.: Effect of reinforcement particle-size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite. J. Am. Ceram. Soc. 75, 3137 1992CrossRefGoogle Scholar
8.Geiger, A.L., Hasselman, D.P.H., Donaldson, K.Y.: Effect of reinforcement particle size on the thermal conductivity of a particulate silicon carbide-reinforced aluminium-matrix composite. J. Mater. Sci. Lett. 12, 420 1993CrossRefGoogle Scholar
9.Every, A.G., Tzou, Y., Hasselman, D.P.H., Raj, R.: The effect of particle-size on the thermal-conductivity of ZnS diamond composites. Acta Metall. Mater. 40, 123 1992CrossRefGoogle Scholar
10.Tjong, S.C.: Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 9, 639 2007CrossRefGoogle Scholar
11.Liu, Y.Q., Cong, H.T., Wang, W., Cheng, H.M.: AlN nanoparticle-reinforced nanocrystalline Al matrx composites: Fabrication and mechanical properties. Mater. Sci. Eng., A (2008, submitted).Google Scholar
12.Ma, Z.Y., Tjong, S.C., Li, Y.L.: The performance of aluminium-matrix composites with nanometric particulate Si–N–C reinforcement. Compos. Sci. Technol. 59, 263 1999CrossRefGoogle Scholar
13.Ward, D.K., Curtin, W.A., Qi, Y.: Mechanical behavior of aluminum-silicon nanocomposites: A molecular dynamics study. Acta Mater. 54, 4441 2006CrossRefGoogle Scholar
14.Tang, Y.B., Liu, Y.Q., Sun, C.H., Cong, H.T.: AlN nanowires for Al-based composites with high strength and low thermal expansion. J. Mater. Res. 22, 2711 2007CrossRefGoogle Scholar
15.Kuzumaki, T., Miyazawa, K., Ichinose, H., Ito, K.: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13, 2445 1998CrossRefGoogle Scholar
16.Zhong, R., Cong, H.T., Hou, P.X.: Fabrication of nano-Al based composites reinforced by single-walled carbon. Carbon 41, 848 2003CrossRefGoogle Scholar
17.Cha, S.I., Kim, K.T., Arshad, S.N., Mo, C.B., Hong, S.H.: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 1377 2005CrossRefGoogle ScholarPubMed
18.Tang, Y.B., Cong, H.T., Zhong, R., Cheng, H.M.: Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum. Carbon 42, 3260 2004CrossRefGoogle Scholar
19.Deng, C.F., Ma, Y.X., Zhang, P., Zhang, X.X., Wang, D.Z.: Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater. Lett. 62, 2301 2008CrossRefGoogle Scholar
20.Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 073105 2007CrossRefGoogle Scholar
21.Klemens, P.G., Williams, R.K.: Thermal conductivity of metals and alloys. Int. Met. Rev. 31, 197 1986CrossRefGoogle Scholar
22.Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Thermal diffusivity measurements using the flash technique. J. Appl. Phys. 32, 1679 1961CrossRefGoogle Scholar
23.Wu, F., He, X., Zeng, Y., Cheng, H.M.: Thermal transport enhancement of multi-walled carbon nanotubes/high-density polyethylene composites. Appl. Phys. A 85, 25 2006CrossRefGoogle Scholar
24.Ma, Q.F., Fang, R.S., Xiang, L.C., Guo, S.: Thermal Physical Engineer's Handbook Agricultural & Mechanical Publishing House Press Beijing, China 1986 69197Google Scholar
25.Watari, K., Nakano, H., Urabe, K., Ishizaki, K., Cao, S.X., Mori, K.: Thermal conductivity of AlN ceramic with a very low amount of grain boundary phase at 4 to 1000 K. J. Mater. Res. 17, 2940 2002CrossRefGoogle Scholar
26.Ounaiesa, Z., Parkb, C., Wiseb, K.E., Siochic, E.J., Harrisonc, J.S.: Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63, 1637 2003CrossRefGoogle Scholar
27.Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779 1952CrossRefGoogle Scholar
28.Nan, C.W., Birringer, R.: Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model. Phys. Rev. B 57, 8264 1998CrossRefGoogle Scholar
29.Qin, X.Y., Wu, B.M., Du, Y.L., Zhang, L.D., Tang, H.X.: An experimental study on thermal diffusivity of nanocrystalline Ag. Nanostruct. Mater. 7, 383 1996CrossRefGoogle Scholar
30.Qian, L.H., Lu, Q.H., Kong, W.J., Lu, K.: Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu. Scr. Mater. 50, 1407 2004CrossRefGoogle Scholar
31.Lemieux, S., Elomari, S., Nemes, J.A., Skibo, M.D.: Thermal expansion of isotropic Duralcan metal-matrix composites. J. Mater. Sci. 33, 4381 1998CrossRefGoogle Scholar
32.Geiger, A.L., Jackson, M.: Low-expansion MMCs boost avionics. Adv. Mater. Processes 136, 23 1989Google Scholar
33.Zhang, Q., Chen, G.Q., Wu, G.H., Xiu, Z.Y., Luan, B.F.: Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology. Mater. Lett. 57, 1453 2003CrossRefGoogle Scholar
34.Couturier, R., Ducret, D., Merle, P., Disson, J.P., Joubert, P.: Elaboration and characterization of a metal matrix composite: Al/AlN. J. Eur. Ceram. Soc. 17, 1861 1997CrossRefGoogle Scholar
35.Lai, S.W., Chung, D.D.L.: Superior high-temperature resistance of aluminum nitride particle-reinforced aluminum compared to silicon-carbide or alumina particle-reinforced aluminum. J. Mater. Sci. 29, 6181 1994CrossRefGoogle Scholar
36.Yan, Y., Geng, L.: Effects of particle size on the thermal expansion behavior of SiCp/Al composites. J. Mater. Sci. 42, 6433 2007CrossRefGoogle Scholar