Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T13:39:56.079Z Has data issue: false hasContentIssue false

The temperature-dependent luminescence properties of BaAl2−xSixO4−xNx:Eu2+ and its application in yellowish-green light emitting diode

Published online by Cambridge University Press:  31 January 2011

Mei Zhang
Affiliation:
Ministry of Education Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China; and Institute of Functional Materials, WuYi University, Jiangmen, Guangdong 529020, People's Republic of China
Jing Wang*
Affiliation:
Ministry of Education Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China; and Institute of Functional Materials, WuYi University, Jiangmen, Guangdong 529020, People's Republic of China
Qiang Su*
Affiliation:
Ministry of Education Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
Get access

Abstract

The influences of (SiN)+ and Eu2+ concentration on the optical properties of BaAl2−xSixO4−xNx:Eu2+ were investigated. The lifetime results show that there are two different cation sites occupied by Eu2+ ions and the energy transfer occurs between them. The Huang–Rhys factor and the Stokes energy shift were determined, and thermal quenching with increasing temperature was observed. Finally, intense yellowish-green light emitting diodes (LED) with the color coordinate of (0.2936, 0.4483) under a forward-bias current of 20 mA was successfully fabricated on the basis of a structure consisting of BaAl2−xSixO4−xNx:Eu2+ phosphor and near-ultraviolet (∼395 nm) GaN chip.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nakamura, S., Senoh, M., and Mukai, T.: High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl. Phys. Lett. 62, 2390 (1993).CrossRefGoogle Scholar
2Uchida, Y. and Taguchi, T.: Lighting theory and luminous characteristics of white light-emitting diodes. Opt. Eng. 44, 124003 (2005).CrossRefGoogle Scholar
3Sheu, J.K., Chang, S.J., Ku, C.H., Su, Y.K., Wu, L.W., Lin, Y.C., Lai, W.C., Tsai, J.M., Chi, G.C., and Wu, R.K.: White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors. IEEE Photon. Technol. Lett. 15, 18 (2003).CrossRefGoogle Scholar
4Mueller, M.R., Mueller, G.O., and Krames, M.R.: High-power phosphor- converted light-emitting diodes based on III-nitrides. IEEE J. STQE 8, 339 (2002).Google Scholar
5Radkov, E., Bompiedi, R., Srivastava, A.M., Setlur, A.A., and Becker, C.: White light with UV LEDs. Proc. SPIE 5187, 171 (2004).CrossRefGoogle Scholar
6Zhang, M., Wang, J., Ding, W.J., Zhang, Q.H., and Su, Q.: A novel white light-emitting diode (w-LED) fabricated with Sr6BP5O20: Eu2+ phosphor. Appl. Phys. B 86, 647 (2007).CrossRefGoogle Scholar
7Ding, W.J., Wang, J., Zhang, M., Zhang, Q.H., and Su, Q.: Luminescence properties of new Ca10(Si2O7)3Cl2:Eu2+ phosphor. Chem. Phys. Lett. 435, 301 (2007).CrossRefGoogle Scholar
8Park, J.K., Kim, C.H., Park, S.H., Park, H.D., and Choi, S.Y.: Application of strontium silicate yellow phosphor for white light-emitting diodes. Appl. Phys. Lett. 84, 1647 (2004).CrossRefGoogle Scholar
9Park, J.K., Choi, K.J., Yeon, J.H., Lee, S.J., and Kim, C.H.: Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5:Eu phosphor. Appl. Phys. Lett. 88, 043511 (2006).CrossRefGoogle Scholar
10Wu, J.L., Gundiah, G., and Cheetham, A.K.: Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting. Chem. Phys. Lett. 441, 250 (2007).CrossRefGoogle Scholar
11Yu, R.J., Wang, J., Zhang, M., Zhang, J.H., Yuan, H.B., and Su, Q.: A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes. Chem. Phys. Lett. 453, 197 (2008).CrossRefGoogle Scholar
12Xie, R.J. and Hirosaki, N.: Silicon-based oxynitride and nitride phosphors for white LEDs–A review. Sci. Technol. Adv. Mater. 8, 588 (2007).CrossRefGoogle Scholar
13Blasse, G., Wanmaker, W.L., Vrugt, J.W. ter, and Bril, A.: Fluorescence of Eu2+ activated silicates. Philips Res. Rep. 23, 189 (1968).Google Scholar
14Hölsa, J., Jungner, H., Lastusaari, M., and Niittykoski, J.: Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4: Eu2+. J. Alloys Compd. 323, 326 (2001).CrossRefGoogle Scholar
15Aitasalo, T., Holas, J., Jungner, H., Krupa, J.C., Lahtinen, M., Lastusaari, M., Legendziewica, J., Niittykoski, J., and Valkonen, J.: Spectroscopic and structural properties of Ca1-xSrxAl2O4:Eu2+, RE3+ persistent luminescence material Radiat, s.. Eff. Defects Solids 158, 309 (2003).CrossRefGoogle Scholar
16Niittykoski, J., Aitasalo, T., Holas, J., Jungner, H., Lastusaari, M., Parkkinen, M., and Tukia, M.: Effect of boron substitution on the preparation and luminescence of Eu2+ doped strontium aluminates. J. Alloys Compd. 374, 108 (2004).CrossRefGoogle Scholar
17Matsuzawa, T., Aoki, Y., Takeuchi, N., and Murayama, Y.: New long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670 (1996).CrossRefGoogle Scholar
18Li, Y.Q., With, G. de, and Hintzen, H.T.: Luminescence properties of Eu2+-doped MAl2-xSixO4-xNx (M Ca, Sr, Ba) conversion phosphor for white LED applications. J. Electrochem. Soc. 153, G278 (2006).CrossRefGoogle Scholar
19Jabbarova, R.B., Chartierb, C., Tagieva, B.G., Tagieva, O.B., Musayevaa, N.N., Barthoub, C., and Benalloul, P.: Radiative properties of Eu2+ in BaGa2S4. J. Phys. Chem. Solids 66, 1049 (2005).CrossRefGoogle Scholar
20Barthou, C., Jabbarov, R.B., Benalloul, P., Chartier, C., Musayeva, N.N., Tagiev, B.G., and Tagiev, O.B.: Radiative properties of the blue BaAl2S4:Eu2+ phosphor. J. Electrochem. Soc. 153, G253 (2006).CrossRefGoogle Scholar
21Bachmanna, V., Justela, T., Meijerink, A., Ronda, C., and Schmidt, P.J.: Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions. J. Lumin. 121, 441 (2006).CrossRefGoogle Scholar
22Dorenbos, P.: F → d transition energies of divalent lanthanides in inorganic compounds. J. Phys. Condens. Matter 15, 575 (2003).CrossRefGoogle Scholar
23Dorenbos, P.: Energy of the first 4f74f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104, 239 (2003).CrossRefGoogle Scholar
24Sommerdijk, J.L., Verstegen, J.M.P.J., and Bril, A.: Luminescence of MeFX: Eu2+ (Me = Sr, Ba; X = Cl, Br). J. Lumin. 8, 502 (1974).CrossRefGoogle Scholar
25Sosa, R.F., Alvarez, E.R., Comacho, M.A., Munoz, A.F., and Rubio, J.O.: Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, Eu2+ KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+. J. Phys. Condens. Matter 7, 6561 (1995).CrossRefGoogle Scholar
26Poort, S.H.M., Blokpoel, W.P., and Blasse, G.: Luminescence of Eu2+ in barium and strontium aluminate and gallate. Chem. Mater. 7, 1547 (1995).CrossRefGoogle Scholar
27Zhang, Z.Y., Wang, J., Zhang, M., Zhang, Q.H., and Su, Q.: The energy transfer from Eu2+ to Tb3+ in calcium chlorapatite phosphor and its potential application in LEDs. Appl. Phys. B 91, 529 (2008).CrossRefGoogle Scholar
28Shinoya, S. and Yen, W.M.: Phosphor Handbook (CRC Press, Boca Raton, FL, 1999).Google Scholar
29Henderson, B. and Imbusch, G.F.: Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989).Google Scholar