Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:20:58.564Z Has data issue: false hasContentIssue false

Synthesis of stoichiometric lead molybdate PbMoO4: An x-ray diffraction, Fourier transform infrared spectroscopy, and differential thermal analysis study

Published online by Cambridge University Press:  31 January 2011

H. C. Zeng
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511
Get access

Abstract

The PbO/MoO3 system with 47%: 53%, 53%: 47%, and 50%: 50% molar ratios at various processing temperatures has been studied with x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential thermal analysis (DTA) methods. It is found that in addition to the crystallization of primary PbMoO4 phase, subphases such as Pb2MoO5 and PbMo2O7 are also formed. The remaining PbO and MoO3 are detected at certain stages of the thermal process due to localized powder inhomogeneity. Physical processes, such as sublimation, eutectic melting, solid to liquid, and liquid to vapor transformations are also investigated. In particular, evaporations of excessive PbO or MoO3 in the nonstoichiometric PbO/MoO3 can be correlated to thermal processing parameters. The current study has led to the following three processing guidelines to obtain stoichiometric PbMoO4: (i) for high temperature application, such as the Czochralski melt growth, it is suggested an excessive MoO3 (a few mol %) must be included and a slow heating rate should be employed; (ii) for low temperature synthesis, the stoichiometric PbO–MoO3 can be used, but with a fast heating rate; and (iii) PbO-rich PbO/MoO3 system is not recommended in PbMoO4 synthesis.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Satoh, T., Ohhara, A., Fujii, N., and Namikata, T., J. Cryst. Growth 24/25, 441 (1974).CrossRefGoogle Scholar
2.Bonner, W. A. and Zydzik, G. J., J. Cryst. Growth 7, 65 (1970).CrossRefGoogle Scholar
3.Takano, S., Esashi, S., Mori, K., and Namikata, T., J. Cryst. Growth 24/25, 437 (1974).CrossRefGoogle Scholar
4.Minowa, M., Itakura, K., Moriyama, S., and Ootani, W., Nucl. Instrum. Methods, Phys. Res. A 320, 500 (1992).CrossRefGoogle Scholar
5.He, C. J., Lin, Y. Y., Su, W. T., and Shen, B. J., Guisuanyan Xuebao (J. Silicate Salts, in Chinese) 9, 285 (1981).Google Scholar
6.Namikata, T. and Esashi, S., Jpn. J. Appl. Phys. 11, 772 (1972).CrossRefGoogle Scholar
7.Esashi, S. and Namikata, T.Fujitsu Sci. Techol. J., Dec, 211 (1972).Google Scholar
8.Loiacono, G. M., Balascio, J. F., Bonner, R., and Savage, A., J. Cryst. Growth 21, 1 (1974).CrossRefGoogle Scholar
9.Kimura, M., Ohba, H., and Yamazaki, T., Optronics (in Japanese) 9, 95 (1985).Google Scholar
10.Parant, J. P., Villela, G., Gourier, D., Le Sergent, C., and Dumas, J. P., J. Cryst. Growth 52, 576 (1981).CrossRefGoogle Scholar
11.Bernbardt, H. J., Phys. Status Solidi A 45, 353 (1978).CrossRefGoogle Scholar
12.Zeng, H. C., Chong, T. C., Lim, L. C., Kumagai, H., and Hirano, M., J. Cryst. Growth 140, 148 (1994).CrossRefGoogle Scholar
13.Zeng, H. C., Chong, T. C., Lim, L. C., Kumagai, H., and Hirano, M., J. Cryst. Growth (1995, in press).Google Scholar
14.Laudise, R. A., The Growth of Single Crystal (Prentice-Hall, Englewood Cliffs, NJ, 1970), p. 55.Google Scholar
15.Brown, S., Marshall, A., and Hirst, P., Mater. Sci. Eng. A 173, 23 (1993).CrossRefGoogle Scholar
16.Neiman, A. Y., Tkachenko, E. V., Feodorova, L. M., Petrov, A. N., Gabrielyan, V. T., and Karagezyan, S. M., Inorganic Materials (Izvestiya Akademii Nauk SSSR, Neorganichekie Materialy) 16, 2025 (1980).Google Scholar
17.Groenink, J. A. and Binsma, H., J. Solid State Chemistry 29, 227 (1979).CrossRefGoogle Scholar
18.Neiman, A. Y., Afanasiev, A.A., Feodorova, L. M., Gabrielian, V.T., and Karagezian, S. M., Phys. Status Solidi A 83, 153 (1984).CrossRefGoogle Scholar
19.Gabrielian, V. T., Fedorova, L. M., Tkachenko, E. B., and Neiman, A. Y., Cryst. Res. Technol. 21, 439 (1986).CrossRefGoogle Scholar
20.CRC Handbook of Chemistry and Physics, 65th Ed., edited by R. C. Weast, M. J. Astle, and W. H. Beyer (CRC Press, Boca Raton, FL, 1984) p. D-195.Google Scholar
21.Najbar, M., Bielanski, B., Camra, J., Bielanska, E., Wal, W., Chrzaszcz, J., and Ormaniec, W., in Preparation of Catalysts IV, edited by Delmon, B., Grange, P., Jacobs, P. A., and Poncelet, G. (Elsevier Science, Amsterdam, 1987), p. 217.Google Scholar
22.Znasik, P. and Jamnicky, M., J. Non-Cryst. Solids 146, 74 (1992).CrossRefGoogle Scholar
23.Machida, N., Chusho, M., and Minami, T., J. Non-Cryst. Solids 101, 70 (1988).CrossRefGoogle Scholar
24.Zeng, H. C., Lin, J., Teo, W. K., Loh, F. C., and Tan, K. L., J. Non-Cryst. Solids 181, 49 (1995).CrossRefGoogle Scholar
25.Zeng, H. C. and Shi, S., J. Non-Cryst. Solids 185, 31 (1995).CrossRefGoogle Scholar
26.Lin, J., Neoh, K. G., Li, N., Tan, T. C., Wee, A. T. S., Huan, A. C. H., and Tan, K. L., Inorg. Chem. 32, 3093 (1993).CrossRefGoogle Scholar
27. Joint Committee on Powder Diffraction Standards (JCPDS), No. 8–475, Ref: NBS Circular 539 (7), 23 (1957).Google Scholar
28. Joint Committee on Powder Diffraction Standards (JCPDS), No. 5–0508, Ref: NBS Circular 539, Vol. III (1953).Google Scholar
29. Joint Committee on Powder Diffraction Standards (JCPDS), No. 38–1477, Ref: H. McMurdie, Powder Diffraction J. 2, 46 (1987).Google Scholar
30.Iordanova, R., Dimitrov, V., Dimitriev, Y., and Klissurski, D., J. Non-Cryst. Solids 180, 58 (1994).CrossRefGoogle Scholar
31.Chowdari, B. V. R., Tan, K. L., Chia, W. T., and Gopalakrishnan, R., J. Non-Cryst. Solids 128, 18 (1991).CrossRefGoogle Scholar
32.Eda, K., J. Solid State Chem. 95, 64 (1991).CrossRefGoogle Scholar
33.Joint Committee on Powder Diffraction Standards (JCPDS), No. 24–579, Ref: Miyazawa and Iwasaki, J. Cryst. Growth 8, 359 (1971).CrossRefGoogle Scholar
34.Popov, T. S., Klissurski, D. G., Ivanov, K. I., and Pesheva, J., in Preparation of Catalysts IV, edited by Delmon, B., Grange, P., Jacobs, P. A., and Poncelet, G. (Elsevier Science, Amsterdam, 1987), p. 191.Google Scholar
35.Trettenhahn, G. L. J., Nauer, G. E., and Neckel, A., Vibrational Spectroscopy 5, 85 (1993).CrossRefGoogle Scholar
36.Gutt, W., and Majumdar, A. J., in Differential Thermal Analysis, edited by Mackenzie, R. C. (Academic Press, New York, 1972), Vol. 2, Chap. 29, p. 79.Google Scholar
37.Kissinger, H. E., J. Res. Natl. Bur. Stand. 57, 217 (1956).CrossRefGoogle Scholar
38.Kissinger, H. E., Analyt. Chem. 29, 1702 (1957).CrossRefGoogle Scholar