Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T16:02:15.498Z Has data issue: false hasContentIssue false

Synthesis of Silicon Carbide Films from Partially Oxidized Polyvinylsilane by Carbon Tetrachloride Solution Casting

Published online by Cambridge University Press:  31 January 2011

Masaki Narisawa*
Affiliation:
Department of Metallurgy and Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai, Osaka 599–8531, Japan
Takeshi Hasegawa
Affiliation:
Department of Metallurgy and Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai, Osaka 599–8531, Japan
Kiyohito Okamura
Affiliation:
Department of Metallurgy and Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Sakai, Osaka 599–8531, Japan
Masayoshi Itoh
Affiliation:
Fukushima National College of Technology, 30 Aza Nagao, Taira Kamiarakawa, Iwaki, Fukushima 970–8034, Japan
Thomas Apple
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
Kevin V. Moraes
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
Leonard V. Interrante
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
*
a)Address all correspondence to this author. e-mail: nar@mtl.osakafu-u.ac.jp
Get access

Abstract

Polyvinylsilane (PVS), derived from vinylsilane by radical polymerization, was partially oxidized in hot carbon tetrachloride solution by flowing air. If the air flow time is adjusted, soft gel films can be formed in a Teflon dish by casting the PVS solution. After the PVS films were peeled from the substrates, they were pyrolyzed at various temperatures. Spectroscopic studies of the pyrolyzed films up to 1273 K suggested that carbosilane (Si–CH2–Si) structures are formed in the films at 473–673 K. The compositions of the amorphous films obtained at 1673 K were approximately SiC1.38O0.21 and SiC1.41O0.51, depending on the crosslinking conditions. The oxygen incorporated in the films was removed in the form of CO and SiO during further heating at 1673–1873 K. The compositions of the films were changed to approximately SiC1.25 and SiC1.26, respectively, at 2073 K. The films obtained at 1273 K did not show degradation during the oxidation at 1273–1673 K while a protective silica layer was formed on their surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yajima, S., J. Hayashi, and M. Omori, Chem. Lett. 1975, 931 (1975).CrossRefGoogle Scholar
Okamura, K., Composites 18, 107 (1987).CrossRefGoogle Scholar
Laine, R.M. and Babonneau, F., Chem. Mater. 5, 260 (1993).Google Scholar
Birot, M., Pillot, J-P., and Dunogués, J., Chem. Rev. 95, 1443 (1995).Google Scholar
Villeneuve, J.F., Mocaer, D., Pailler, R., Naslain, R., and Oley, P., J. Mater. Sci. 28, 1227 (1993).Google Scholar
Lipowitz, J., Barnard, T., Bujalski, D., Rabe, J., Zank, G., Zangvil, A., and Xu, Y., Compos. Sci. and Tech. 51, 167 (1994).CrossRefGoogle Scholar
Chollon, G., Pailler, R., Naslain, R., Laanani, F., Monthioux, M., and Oley, P., J. Mater. Sci. 32, 327 (1997).CrossRefGoogle Scholar
Ishikawa, T., Kohtoku, Y., Kumagawa, K., Yamamura, T., and Nagasawa, T., Nature 391, 773 (1998).CrossRefGoogle Scholar
Shin, D-W. and Tanaka, H., Am, J.. Ceram. Soc. 77, 97 (1994).CrossRefGoogle Scholar
Tanaka, T., Tamari, N., Kondoh, I., and Iwasa, M., J. Ceram. Soc. Japan 105, 1146 (1997).CrossRefGoogle Scholar
Jones, R., Szweda, A., and Petrak, D., Composites: Part A 30, 569 (1999).Google Scholar
Kotani, M., Kohyama, A., and Katoh, Y., J. Nucl. Mater. 37, 289 (2001).Google Scholar
Seyferth, D., Tasi, M., and Woo, H-G., Chem. Mater. 7, 236 (1995).CrossRefGoogle Scholar
Itoh, M., Iwata, K., Kobayashi, M., Takeuchi, R., and Kabeya, T., Macromolecules 31, 5609 (1998).Google Scholar
Idesaki, A., Narisawa, M., Okamura, K., Sugimoto, M.; Morita, Y., Seguchi, T., and Itoh, M., Key Eng. Mater. 164–165, 39 (1999).Google Scholar
Narisawa, M., Idesaki, A., Kitano, S., Okamura, K., Sugimoto, M., Seguchi, T., and Itoh, M., J. Am. Ceram. Soc. 82, 1045 (1999).Google Scholar
Kotani, M., Kohyama, A., Okamura, K., and Inoue, T., Ceram Eng. Sci. Proc. 20, 309 (1999).Google Scholar
Okamura, K. and Seguchi, T., J. Inorg. Organometall. Polym. 2, 171 (1992).CrossRefGoogle Scholar
Seyferth, D., Wood, T.G., Tracy, H.J., and Robison, J.L., J. Am. Ceram. Soc. 75, 1300 (1992).Google Scholar
Interrante, L.V., Whitmarsh, C.W., and Sherwood, W., Ceram. Trans. 58, 111 (1995).Google Scholar
Wang, Y., Kamiyama, T., and Suzuki, K., Mater. Sci. Eng. A 217/ 218, 94 (1996).Google Scholar
Sorarú, G. D., Dallapiccola, E., and D’Andrea, G., J. Am. Ceram. Soc. 79, 2074 (1996).Google Scholar
Guizard, C., Julbe, A., Larbot, A., and Cot, L., In Chemical Processing of Ceramics, edited by Lee, B.I. and Pope, E.J.A. (Marcel Dekker, New York, 1994), p. 501.Google Scholar
Li, Z., Kusakabe, K., and Morooka, S., J. Membrane Sci. 118, 159 (1996).Google Scholar
Lee, L-L. and Tsai, D-S., J. Am. Ceram. Soc. 82, 2796 (1999).CrossRefGoogle Scholar
Sorarú, G., Liu, Q., Interrante, L.V., and Apple, T., Chem. Mater. 10, 4047 (1998).Google Scholar
Wang, F., Gill, W.N., Kirk, A., and Apple, T., J. Non-Cryst. Solids 275, 210 (2000).CrossRefGoogle Scholar
Liu, Q., Wu, H-J., Lewis, R., Maciel, G.E., and Interrante, L.V., Chem. Mater. 11, 2038 (1999).CrossRefGoogle Scholar
Narisawa, M., Shimoda, M., Okamura, K., Sugimoto, M., and Seguchi, T., Bull. Chem. Soc. Jpn. 68, 1098 (1995).Google Scholar
Campostrini, R., D’Andrea, G., Carturan, G., Ceccato, R., and Sorarú, G.D., J. Mater. Chem. 6, 585 (1996).Google Scholar
Ruska, J., Gauckler, L.I., Lorenz, J., and Rexer, H.U., J. Mater. Sci. 14, 2013 (1979).Google Scholar
Tanaka, H. and Iyi, N., J. Am. Ceram. Soc. 78, 1223 (1995).Google Scholar
Nishimura, T., Haug, R., Bill, J., Thurn, G., and Aldinger, F., J. Mater. Sci. 33, 5237 (1998).Google Scholar
Moraes, K.V. and Interrante, L.V. (unpublished).Google Scholar
Narushima, T., Goto, T., and Hirai, T., J. Am. Ceram. Soc. 72, 1386 (1989).CrossRefGoogle Scholar
Jacobson, N.S., J. Am. Ceram. Soc. 76, 3 (1993).CrossRefGoogle Scholar
Liu, Q. and Interrante, L.V. (private communications); Liu, Q., Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, Chap. 3.Google Scholar
Iwamoto, Y., Kikuta, K., and Hirano, S., J. Mater. Res. 14, 1886 (1999).Google Scholar
Sorarú, G.D., J. Sol-Gel Sci. Technol. 2, 843 (1994).CrossRefGoogle Scholar
Corriu, R.J.P., Leclercq, D., Mutin, P.H., Planeix, J-M., and Vioux, A., Organometallics 12, 454 (1993).Google Scholar
Tachibana, A., Kurosaki, Y., Yamaguchi, K., and Yamabe, T., J. Phys. Chem. 95, 6849 (1991).CrossRefGoogle Scholar
Yajima, S., Hasegawa, Y., Hayashi, J., and Iimura, M., J. Mater. Sci. 13, 2569 (1978).Google Scholar
Gozzi, M.F. and Yoshida, I.V.P., Macromolecules 28, 7235 (1995).Google Scholar
Gozzi, M.F. and Yoshida, I.V.P., Eur. Polym. J. 33, 1301 (1997).Google Scholar
Laine, R.M. and Selinger, A., In The Chemistry of Organic Silicon Compounds, edited by Rappoport, Z. and Apeloig, Y. (J. Wiley & Sons, London, United Kingdom, 1998), Vol. 2, p. 2245.Google Scholar
Kakimoto, K., Wakai, F., Bill, J., and Aldinger, F., J. Am. Ceram. Soc. 82, 2337 (1999).Google Scholar