Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T23:20:28.524Z Has data issue: false hasContentIssue false

Synthesis of carbon nitride nanocrystals on Co/Ni-covered substrate by nitrogen-atom-beam-assisted pulsed laser ablation

Published online by Cambridge University Press:  31 January 2011

Ning Xu
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Hao Lin
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Li Li
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Weijian Pan
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Jian Sun
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Jiada Wu
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Zhifeng Ying
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Peinan Wang
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Yuancheng Du
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Fuming Li
Affiliation:
State Key Join Laboratory for Material Modification by Laser, Ion & Electron Beams, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
Get access

Abstract

Carbon nitride nanocrystals were synthesized on Co/Ni-covered Si(100) wafers using a nitrogen-atom-beam-assisted pulsed laser ablation deposition method. Transmission electron miscroscopy, x-ray diffraction, and Raman spectroscopy showed that as-deposited films were constructed primarily from nanometer-sized β-C3N4 and CNx crystallites. The co-catalyzation by the cobalt and nickel in the synthesis process is considered to play an important role in the formation of nanocrystalline β-C3N4. The reasons for the formation of carbon nitride nanocrystals were analyzed.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, A.Y. and Cohen, M.L., Science 245, 841 (1989).CrossRefGoogle Scholar
2.Liu, A.Y. and Cohen, M.L., Phys. Rev. B 41, 10727 (1990).CrossRefGoogle Scholar
3.Zhang, Y.F., Zhou, Z.H., and Li, H.L., Appl. Phys. Lett. 68, 634 (1996).CrossRefGoogle Scholar
4.Yen, T.Y. and Chou, C.P., Appl. Phys. Lett. 67, 2801 (1995).CrossRefGoogle Scholar
5.Ogata, K., Chubaci, J.F.D., and Fujimoto, F., J. Appl. Phys. 76, 3791 (1994).CrossRefGoogle Scholar
6.He, X.M., Li, S., Li, W.Z., and Li, H.D., J. Mater. Res. 12, 1595 (1997).CrossRefGoogle Scholar
7.Kaltofen, R., Sebald, T., and Weise, G., Thin Solid Films 290–291, 112 (1996).CrossRefGoogle Scholar
8.Li, D., Chung, Y.W., Wong, M.S., and Sproul, W.D., Tribology 1, 87 (1995).Google Scholar
8.Yu, K.M., Cohen, M.L., Haller, E.E., Hansen, W.L., Liu, A.Y., and Wu, I.C., Phys. Rev. B 49, 5034 (1994).CrossRefGoogle Scholar
10.Ren, Z.M., Du, Y.C., Ying, Z.F., Qiu, Y.X., Xiong, X.X., Wu, J.D., and Li, F.M., Appl. Phys. Lett. 65, 1361 (1994).CrossRefGoogle Scholar
11.Xu, N., Du, Y.C., Ying, Z.F., Ren, Z.M., Li, F.M., Lin, J., Ren, Y.Z., and Zhong, X.F., J. Phys. D: Appl. Phys. 30, 1370 (1997).CrossRefGoogle Scholar
12.Wang, P.N., Xu, N., Ying, Z.F., Ying, X.T., Liu, Z.P., and Yang, W.D., Thin Solid Films 382, 34 (2001).CrossRefGoogle Scholar
13.Niu, C., Lu, Y.Z., and Lieber, C.M., Science 261, 334 (1993).CrossRefGoogle Scholar
14.Xu, N., Du, Y.C., Ying, Z.F., and Li, F.M., Appl. Phys. Lett. 69, 1364 (1996).CrossRefGoogle Scholar
15.Xu, N., Du, Y.C., Ying, Z.F., Ren, Z.M., and Li, F.M., Rev. Sci. Instrum. 68, 2994 (1997).CrossRefGoogle Scholar
16.Ronning, C., Felderman, H., Merk, R., Hofsass, H., Reinke, P., and Thiele, J.U., Phys. Rev. B 58, 2207 (1998).CrossRefGoogle Scholar
17.Sharma, A.K. and Narayan, J., Int. Mater. Rev. 42, 137 (1997).CrossRefGoogle Scholar
18.Wu, D.W., Fan, W., Guo, H.X., He, M.B., Meng, X.Q., and Fan, X.J., Solid State Commun. 103, 193 (1997).CrossRefGoogle Scholar
19.He, J.L. and Chang, W.L., Surf. Coat. Technol. 99, 184 (1998).CrossRefGoogle Scholar
20.Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
21.Kaufman, J.H., Metin, S., and Saperstein, D.D., Phys. Rev. B 39, 13053 (1989).CrossRefGoogle Scholar
22.Chen, M.Y., Li, D., Lin, X., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., J. Vac. Sci. Technol. A 11, 521 (1993)CrossRefGoogle Scholar
23.Robins, L.H., J. Mater. Res. 5, 2456 (1990).CrossRefGoogle Scholar
24.Widany, J., Weich, F., Kohler, T., Porezag, D., and Frauenheim, T., Diamond Relat. Mater. 5, 1031 (1996).CrossRefGoogle Scholar
25.Wixam, M., J. Am. Ceram. Soc. 73, 1973 (1990).CrossRefGoogle Scholar
26.Yen, T.Y. and Chou, C.P., Solid State Commun. 95, 281 (1995).CrossRefGoogle Scholar
27.Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Maby, E.W., and Mazurek, H., Phys. Rev. B 24, 1027 (1981).CrossRefGoogle Scholar
28.Lu, Y.F., Ren, Z.M., Chong, T.C., Cheong, B.A., Pang, S.I., Wang, J.P., and Li, K., J. Appl. Phys. 86, 4954 (1999).CrossRefGoogle Scholar
29.Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Wiliams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G., and Dresselhaus, M.S., Science 275, 187 (1997).CrossRefGoogle Scholar
30.Yudasaka, M., Komatsu, T., Ichihashi, T., Achiba, Y., and Iijima, S., J. Phys. Chem. B 102, 4892 (1998).CrossRefGoogle Scholar
31.Sato, Y. and Kamo, M., Surf. Coat. Technol. 39/40, 199 (1989).Google Scholar
32.Yu, D.P., Sun, X.S., Lee, C.S., Bello, I., Lee, S.T., Gu, H.D., Leung, K.M., Zhou, G.W., Dong, Z.F., and Zhang, Z., Appl. Phys. Lett. 72, 1966 (1998).CrossRefGoogle Scholar
33.Tojima, H., Okamoto, T., Yamada, A., Konagai, M., and Takahashi, K., J. Crystal Growth 138, 408 (1994).CrossRefGoogle Scholar
34.Chang, H.L., Lin, C.H., and Kuo, C.T., Thin Solid Films 420, 219 (2002).CrossRefGoogle Scholar