Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T07:07:04.307Z Has data issue: false hasContentIssue false

Synthesis and characterization of TiO2 nanocrystalline powder prepared by homogeneous precipitation using urea

Published online by Cambridge University Press:  31 January 2011

Dong Seok Seo
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Hwan Kim
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Hang Chul Jung
Affiliation:
Division of Metallurgical and Materials Engineering, Chosun University, Gwangju 501–759, Korea
Jong Kook Lee*
Affiliation:
Division of Metallurgical and Materials Engineering, Chosun University, Gwangju 501–759, Korea
*
a)Address all correspondence to this author. e-mail: jklee@mail.chosun.ac.kr
Get access

Abstract

TiO2 nanocrystalline powder was synthesized by homogeneous precipitation method using urea, and its characteristics were investigated through comparison with the powder prepared by conventional precipitation using ammonia. The homogeneously precipitated powder was anatase-type TiO2 with a particle size of 4–5 nm and a uniform spherical particle shape. The fact that the transformation from anatase to rutile was prohibited at elevated temperatures in the homogeneously precipitated powder can be useful to prepare anatase-type TiO2 thin films by calcination at high temperatures. With increasing heat-treatment temperature, the particle size of the homogeneously precipitated powder was smaller than that of the conventionally precipitated powder, and the particle shape was more uniform. The homogeneously precipitated powder showed good photocatalytic activity for Ag ion photoadsorption because the powder had both good crystallinity and a large specific surface area of 280 m2/g.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bahnemann, D., Bockelmann, D., and Goslich, R., Solar Energy Mater. 24, 564 (1991).Google Scholar
2.Terabe, K., Kato, K., Miyazaki, H., Yamaguchi, S., and Imai, A., J. Mater. Sci. 29, 1617 (1994).Google Scholar
3.Dominguez, C., Garcia, J., Perdraz, M.A., Torres, A., and Galan, M.A., Catal. Today 40(1), 85 (1998).Google Scholar
4.Yamaguchi, Y., Yamazaki, M., Yoshihara, S., and Shirakashi, T., J. Electroanal. Chem. 442, 1 (1998).Google Scholar
5.Ollis, D.F., Pelizzetti, E., and Serpone, N., Environ. Sci. Technol. 25, 1523 (1991).CrossRefGoogle Scholar
6.Navio, J.A., Colvin, G., and Herrman, J.M., J. Photochem. Photobiol. A: Chem. 108, 179 (1997).Google Scholar
7.Linsebigler, A.L., Lu, G., and Yates, J.T., Jr., Chem. Rev. 95, 735 (1995).Google Scholar
8.Ohtani, B. and Nishimoto, S.I., J. Phys. Chem. 97, 920 (1993).CrossRefGoogle Scholar
9.Seo, D.S., Lee, J.K., and Kim, H., J. Cryst. Growth 233, 298 (2001).CrossRefGoogle Scholar
10.Seo, D.S., Lee, J.K., Lee, E.G., and Kim, H., Mater. Lett. 51, 115 (2001).Google Scholar
11.Djuricic, B., Pickering, S., McGarry, D., Glaude, P., Tambuyser, P., Schuster, K., Ceram. Int. 21(3), 195 (1995).CrossRefGoogle Scholar
12.Gijp, S., Emond, M.H.J., Winnubst, A.J.A., and Verweij, H., J. Eur. Ceram. Soc. 19, 1683 (1999).Google Scholar
13.Kumar, K.N.P., Appl. Catal. 119, 163 (1994).CrossRefGoogle Scholar
14.Gutcho, M.H., in Inorganic Pigments (Noyes Data Corp., 1980), p. 161.Google Scholar
15.Seok, S.I., Kim, M.S., Suh, T.S., Kwak, C.H., and Kim, H.J., J. Kor. Ceram. Soc. 36, 1178 (1999).Google Scholar
16.Ma, W., Lu, Z., and Zhang, M., Appl. Phys. A 66, 621 (1998).CrossRefGoogle Scholar
17.Parker, J.C. and Sigel, R.W., J. Mater. Res. 5, 1248 (1990).Google Scholar
18.Parker, J.C. and Sigel, R.W., Appl. Phys. Lett. 59, 943 (1990).Google Scholar
19.Music, S., Gotic, M., Ivanda, M., Popovic, S., Turkovic, A., Trojko, R., Sekulic, A., and Furic, K., Mater. Sci. Eng. B 47, 33 (1997).Google Scholar
20.Voronin, E.F., Pakhlov, E.M., and Chuiko, A.A., Colloids Surf. A: Physicochem. Eng. Aspects 101, 123 (1995).Google Scholar
21.Bulanin, K.M., Lavalley, J.C., and Tsyganenko, A.A., Colloids Surf. A: Physicochem. and Eng. Aspects 101, 153 (1995).CrossRefGoogle Scholar
22.Ivanda, M., Music, S., Popovic, S., and Gotic, M., J. Mol. Struct. 480, 645 (1999).CrossRefGoogle Scholar
23.Nova, I., Acqua, L.D., Lietti, L., Giamello, E., and Forzatti, P., Appl. Catal. B: Environ. 35, 31 (2001).Google Scholar
24.Huang, P.J., Chang, H., Yeh, C.T., and Tsai, C.W., Thermochim. Acta 297, 85 (1997).CrossRefGoogle Scholar
25.Sul, Y.T., Johansson, C.B., Petronis, S., Krozer, A., Jeong, Y.S., Wennerberg, A., and Albrektsson, T., Biomater. 23, 491 (2002).CrossRefGoogle Scholar
26.Falaras, P., Goff, A.H., Bernard, M.C., and Xagas, A., Sol. Energy Mater. Sol. Cells 64, 167 (2000).Google Scholar
27.Arabatzis, I.M., Antonaraki, S., Stergiopoulos, T., Hiskia, A., Papaconstantinou, E., Bernard, M.C., and Falaras, P., J. Photochem. Photobiol. A: Chem. 5929, 1 (2002).Google Scholar
28.Iida, Y. and Ozaki, S., J. Am. Ceram. Soc. 44, 120 (1961).Google Scholar
29.Shannon, R.D. and Pask, J.A., J. Am. Ceram. Soc. 48, 391 (1965).Google Scholar
30.Zhang, H. and Banfield, J.F., J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
31.Criado, J. and Real, C., J. Chem. Soc. Faraday Trans. 1, 2765 (1983).CrossRefGoogle Scholar