Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T02:35:23.242Z Has data issue: false hasContentIssue false

Synthesis and capacitive properties of carbonaceous sphere@MnO2 rattle-type hollow structures

Published online by Cambridge University Press:  31 January 2011

X.S. Zhao*
Affiliation:
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
*
a)Address all correspondence to this author. e-mail: chezxs@nus.edu.sg
Get access

Abstract

Carbonaceous sphere@MnO2 rattle-type hollow spheres were synthesized under mild experimental conditions. The as-prepared hollow structures were characterized using scanning electron microscope, transmission electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and nitrogen adsorption techniques. The characterization data showed the formation of rattle-type hollow structures with a mesoporous MnO2 shell and a carbonaceous sphere core. The composition and shell thickness of the hollow spheres can be controlled experimentally. The capacitive performance of the hollow structures was evaluated by using both cycle voltammetry and charge–discharge methods. The results demonstrated a specific capacitance as high as 184 F/g at a current density of 125 mA/g. The good electrocapacitive performance resulted from the mesoporous structure and high surface area of the MnO2-based hollow spheres.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhang, L.L., Zhao, X.S.Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle ScholarPubMed
2.Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008)CrossRefGoogle ScholarPubMed
3.Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J-M., van Schalkwijk, W.Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005)CrossRefGoogle ScholarPubMed
4.Simon, P., Gogotsi, Y.Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)CrossRefGoogle ScholarPubMed
5.Obreja, V.V.N.On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material–A review. Physica E 40, 2596 (2008)CrossRefGoogle Scholar
6.Zhang, Y., Feng, H., Wu, X.B., Wang, L.Z., Zhang, A.Q., Xia, T.C., Dong, H.C., Li, X.F., Zhang, L.S.Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 34, 4889 (2009)CrossRefGoogle Scholar
7.Zheng, J.P., Cygan, P.J., Jow, T.R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699 (1995)CrossRefGoogle Scholar
8.Toupin, M., Brousse, T., Belanger, D.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184 (2004)CrossRefGoogle Scholar
9.Chen, J., Cheng, F.Y.Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42, 713 (2009)CrossRefGoogle ScholarPubMed
10.Lee, H.Y., Goodenough, J.B.Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220 (1999)CrossRefGoogle Scholar
11.Brousse, T., Toupin, M., Dugas, R., Athouël, L., Crosnier, O., Bélanger, D.Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171 (2006)CrossRefGoogle Scholar
12.Devaraj, S., Munichandraiah, N.Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008)CrossRefGoogle Scholar
13.Lou, X.W., Archer, L.A., Yang, Z.C.Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 20, 3987 (2008)CrossRefGoogle Scholar
14.Xiao, W., Hui, X., Jerry-Ying-His, F., Li, L.Electrochemical synthesis and supercapacitive properties of ɛ-MnO2 with porous/nanoflaky hierarchical architectures. J. Electrochem. Soc. 156, A627 (2009)CrossRefGoogle Scholar
15.Li, B.X., Rong, G.X., Xie, Y., Huang, L.F., Feng, C.Q.Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 45, 6404 (2006)CrossRefGoogle ScholarPubMed
16.Xu, M.W., Kong, L.B., Zhou, W.J., Li, H.L.Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 111, 19141 (2007)CrossRefGoogle Scholar
17.Yu, P., Zhang, X., Wang, D.L., Wang, L., Ma, Y.W.Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des. 9, 528 (2008)CrossRefGoogle Scholar
18.Sun, X.M., Li, Y.D.Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43, 597 (2004)CrossRefGoogle ScholarPubMed
19.Sevilla, M., Fuertes, A.B.Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15, 4195 (2009)CrossRefGoogle ScholarPubMed
20.Sevilla, M., Fuertes, A.B.The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281 (2009)CrossRefGoogle Scholar
21.Jia, G., Yang, M., Song, Y.H., You, H.P., Zhang, H.J.General and facile method to prepare uniform Y2O3:Eu hollow microspheres. Cryst. Growth Des. 9, 301 (2008)CrossRefGoogle Scholar
22.Subramanian, V., Zhu, H.W., Wei, B.Q.Nanostructured manganese oxides and their composites with carbon nanotubes as electrode materials for energy storage devices. Pure Appl. Chem. 80, 2327 (2008)CrossRefGoogle Scholar
23.Sun, X.M., Liu, J.F., Li, Y.D.Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 12, 2039 (2006)CrossRefGoogle ScholarPubMed
24.Lua, A.C., Yang, T.Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 274, 594 (2004)CrossRefGoogle ScholarPubMed
25.Ni, J.P., Lu, W.C., Zhang, L.M., Yue, B.H., Shang, X.F., Lv, Y.Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J. Phys. Chem. C 113, 54 (2009)CrossRefGoogle Scholar
26.Moulder, J.K., Stickle, W.F., Sobol, P.E., Bomben, K.D.Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Inc, Eden Prairie, MN 1995)Google Scholar
27.Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., Long, J.W.Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7, 281 (2007)CrossRefGoogle ScholarPubMed
28.Shimodaira, N., Masui, A.Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 92, 902 (2002)CrossRefGoogle Scholar
29.Sampanthar, J.T., Dou, J., Joo, G.G., Widjaja, E., Eunice, L.Q.H.Template-free low temperature hydrothermal synthesis and characterization of rod-shaped manganese oxyhydroxides and manganese oxides. Nanotechology 7, 025601 (2007)CrossRefGoogle Scholar
30.Portehault, D., Cassaignon, S., Nassif, N., Baudrin, E., Jolivet, J-P.A core-corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew. Chem. Int. Ed. 47, 6441 (2008)CrossRefGoogle ScholarPubMed
31.Portehault, D., Cassaignon, S., Baudrin, E., Jolivet, J-P.Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4−/Mn2+ reaction. J. Mater. Chem. 19, 2407 (2009)CrossRefGoogle Scholar
32.Portehault, D., Cassaignon, S., Baudrin, E., Jolivet, J-P.Synthesis of a manganese oxide nanocomposite through heteroepitaxy in aqueous medium. Chem. Commun. (Camb.) 674 (2009)CrossRefGoogle ScholarPubMed
33.Portehault, D., Cassaignon, S., Baudrin, E., Jolivet, J-P.Design of hierarchical core-corona architectures of layered manganese oxides by aqueous precipitation. Chem. Mater. 20, 6140 (2008)CrossRefGoogle Scholar
34.Zhang, L.C., Kang, L.P., Lv, H., Su, Z.K.Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures. J. Mater. Res. 23, 780 (2008)CrossRefGoogle Scholar
35.Barranco, V., Pico, F., Ibaňez, J., Lillo-Rodenas, M.A., Linares-Solano, A., Kimura, M., Oya, A., Rojas, R.M., Amarilla, J.M., Rojo, J.M.Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide. Electrochim. Acta 54, 7452 (2009)CrossRefGoogle Scholar
36.Pico, F., Morales, E., Fernandez, J.A., Centeno, T.A., Ibaňez, J., Rojas, R.M., Amarilla, J.M., Rojo, J.M.Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures. A comparative study as supercapacitor electrodes. Electrochim. Acta 54, 2239 (2009)CrossRefGoogle Scholar
37.Subramanian, V., Zhu, H.W., Vajtai, R., Ajayan, P.M., Wei, B.Q.Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207 (2005)CrossRefGoogle ScholarPubMed