Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T16:25:14.109Z Has data issue: false hasContentIssue false

A study on surfactant-free growth of silver-carbon nanocables by H2SO4-mediated hydrothermal process

Published online by Cambridge University Press:  25 August 2011

HeLin Niu*
Affiliation:
Department of Chemistry, Anhui University, Hefei 230039, China
XuHu Wu
Affiliation:
Department of Chemistry, Anhui University, Hefei 230039, China
Min Qiu
Affiliation:
Department of Chemistry, Anhui University, Hefei 230039, China
YuanHao Gao
Affiliation:
Department of Chemistry, Anhui University, Hefei 230039, China
JiMing Song
Affiliation:
Department of Chemistry, Anhui University, Hefei 230039, China
ChangJie Mao
Affiliation:
Department of Chemistry, Anhui University, Hefei 230039, China
ShengYi Zhang
Affiliation:
Department of Chemistry, Anhui University, Hefei 230039, China
HongLing Liu
Affiliation:
Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
JunHua Wu*
Affiliation:
Pioneer Research Center for Biomedical Nanocrystals, Korea University, Seongbuk-Gu, Seoul 136-713, Korea
*
a)Address all correspondence to these authors. e-mail: niuhelin@ahu.edu.cn
Get access

Abstract

We study the one-pot facile hydrothermal growth of ultralong silver–carbon (Ag–C) nanocables with Ag nanowires as the cores and carbon as the sheaths through the mediation of H2SO4 and without using an organic surfactant. In the investigation, Ag–C nanostructures were systematically and extensively examined as a function of both temperature and H2SO4 concentration to locate the optimal conditions for preparing ultralong, robust, and uniform Ag–C coaxial nanocables at T = 180 °C and 0.5 M H2SO4. The characterization clearly demonstrated a simple, efficient, and surfactant-free synthesis of Ag–C nanocables. In the hydrothermal process, glycerol acts as both reducing agent and carbon source, while H2SO4 mediates the directional growth of the silver nanowire core and assists the deposition of carbon. Moreover, the nanocables manifest unusual ferromagnetism at room temperature and a plausible mechanism of forming Ag–C nanocables was proposed as a result of the chain-like hydrogen sulfate compounds owing to the H2SO4 mediation.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., and Yan, H.Q.: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).Google Scholar
2.Ma, D.K., Zhang, M., Xi, G.C., Zhang, J.H., and Qian, Y.T.: Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and chainlike β-Ag2Se nanorods inside carbonaceous nanotubes. Inorg. Chem. 45, 4845 (2006).CrossRefGoogle ScholarPubMed
3.Sun, Y.G.: Silver nanowires – unique templates for functional nanostructures. Nanoscale 2, 1626 (2010).Google Scholar
4.Guo, X., Qiu, M., Bao, J.M., Wiley, B.J., Yang, Q., Zhang, X.N., Ma, Y.G., Yu, H.K., and Tong, L.M.: Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 9, 4515 (2009).Google Scholar
5.Sun, L., Searson, P.C., and Chien, C.L.: Magnetic anisotropy in prismatic nickel nanowires. Appl. Phys. Lett. 79, 4429 (2001).CrossRefGoogle Scholar
6.Grado-Caffaro, M.A. and Grado-Caffaro, M.: An approach based on the free-electron theory to calculate electron conductance of perfect metallic nanowires. Solid State Commun. 149, 1605 (2009).Google Scholar
7.Dickson, R.M. and Lyon, L.A.: Unidirectional plasmon propagation in metallic manowires. J. Phys. Chem. B 104, 6095 (2000).Google Scholar
8.De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., and Coleman, J.N.: Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano. 3, 1767 (2009).CrossRefGoogle ScholarPubMed
9.Pestryakov, A.N., Bogdanchikova, N.E., and Knop-Gericke, A.: Alcohol selective oxidation over modified foam-silver catalysts. Catal. Today 91/92, 49 (2004).Google Scholar
10.Lu, Y.X., Xue, L.L., and Li, F.: Silver nanoparticle catalyst for electroless Ni deposition and the promotion of its adsorption onto PET substrate. Surf. Coat. Tech. 205, 519 (2010).Google Scholar
11.Zong, Y., Cao, Y.L., Jia, D.Z., Bao, S.J., and Lu, Y.: Facile synthesis of Ag/ZnO nanorods using Ag/C cables as templates and their gas-sensing properties. Mater. Lett. 64, 243 (2010).Google Scholar
12.Zhao, H., Fu, H.G., Tian, C.G., Ren, Z.Y., and Tian, G.H.: Fabrication of silver nanoparticles/single-walled carbon nanotubes composite for surface-enhanced Raman scattering. J. Colloid Interface Sci. 351, 343 (2010).Google Scholar
13.Hoheisel, T.N., Schrettl, S., Szilluweit, R., and Frauenrath, H.: Nanostructured carbonaceous materials from molecular precursors. Angew. Chem. Int. Ed. 49, 6496 (2010).Google Scholar
14.Sinnott, S.B. and Andrews, R.: Carbon nanotubes: Synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).Google Scholar
15.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).Google Scholar
16.Hu, B., Wang, K., Wu, L.H., Yu, S.H., Antonietti, M., and Titirici, M-M.: Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813 (2010).Google Scholar
17.Song, X.C., Zheng, Y.F., Liu, G., and Zhang, Y.: Fabrication and chemical etching of Ag/C nanocables. J. Nanosci. Nanotechnol. 10, 6739 (2010).Google Scholar
18.Chen, D.P., Qiao, X.L., Qiu, X.L., Chen, J.G., and Jiang, R.Z.: Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J. Colloid Interface Sci. 344, 286 (2010).Google Scholar
19.Jin, M.S., Kuang, Q., Jiang, Z.Y., Xu, T., Xie, Z.X., and Zheng, L.S.: Direct synthesis of silver/polymer/carbon nanocables via a simple hydrothermal route. J. Solid State Chem. 181, 2359 (2008).CrossRefGoogle Scholar
20.Zheng, R.B., Meng, X.W., and Tang, F.Q.: A general protocol to coat titania shell on carbon-based composite cores using carbon as coupling agent. J. Solid State Chem. 182, 1235 (2009).CrossRefGoogle Scholar
21.Wu, S.Y., Ding, Y.S., Zhang, X.M., Tang, H.O., Chen, L., and Li, B.X.: Structure and morphology controllable synthesis of Ag/carbon hybrid with ionic liquid as soft-template and their catalytic properties. J. Solid State Chem. 181, 2171 (2008).Google Scholar
22.Xu, W.H. and Yu, S-H.: Conducting performance of individual Ag@C coaxial nanocables: Ideal building blocks for interconnects in nanoscale devices. Small 5, 460 (2009).Google Scholar
23.Wang, W.Z., Xiong, S.L., Chen, L.Y., Xi, B.J., Zhou, H.Y., and Zhang, Z.D.: Formation of flexible Ag/C coaxial nanocables through a novel solution process. Cryst. Growth Des. 6, 2422 (2006).CrossRefGoogle Scholar
24.Fang, Z., Tang, K.B., Lei, S.J., and Li, T.W.: CTAB-assisted hydrothermal synthesis of Ag/C nanostructures. Nanotechnology 17, 3008 (2006).CrossRefGoogle Scholar
25.Song, X.C., Zhao, Y., Zheng, Y.F., Yang, E., Fu, J., and He, Y.: Fabrication of Ag/C coaxial nanocables with cross-linked structure by SDS-assisted hydrothermal approach. Cryst. Growth Des. 8, 1823 (2008).Google Scholar
26.Sinha, A. and Sharma, B.P.: Preparation of silver powder through glycerol process. Bull. Mater. Sci. 28, 213 (2005).Google Scholar
27.Kubo, S., Tan, I., White, R.J., Antonietti, M., and Titirici, M-M.: Template synthesis of carbonaceous tubular nanostructures with tunable surface properties. Chem. Mater. 22, 6590 (2010).Google Scholar
28.Murray, W.A. and Barnes, W.L.: Plasmonic materials. Adv. Mater. 19, 3771 (2007).CrossRefGoogle Scholar
29.Jung, J., Seo, D., Park, G., Ryu, S., and Song, H.: Ag-Au-Ag heterometal nanowires: Synthesis, diameter control, and dual transversal modes with diameter dependency. J. Phys. Chem. C 114, 12529 (2010).Google Scholar
30.Bhui, D.K., Bar, H., Sarkar, P., Sahoo, G.P., De, S.P., and Misra, A.: Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J. Mol. Liq. 145, 33 (2009).CrossRefGoogle Scholar
31.Chen, C., Wang, L., Jiang, G., Zhou, J., Chen, X., Yu, H., and Yang, Q.: Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology 17, 3933 (2006).Google Scholar
32.Fu, J.W., Huang, X.B., Huang, Y.W., Pan, Y., Zhu, Y., and Tang, X.Z.: Preparation of silver nanocables wrapped with highly cross-linked organic-inorganic hybrid polyphosphazenes via a hard-template approach. J. Phys. Chem. C 112, 16840 (2008).Google Scholar
33.Caudillo, R., Gao, X., Escudero, R., Jose-Yacaman, M., and Goodenough, J.B.: Ferromagnetic behavior of carbon nanospheres encapsulating silver nanoparticles. Phys. Rev. B 74, 214418 (2006).Google Scholar
34.Liu, H.L., Hou, P., Zhang, W.X., Kim, Y.K., and Wu, J.H.: The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles. Nanotechnology 21, 445602 (2010).CrossRefGoogle ScholarPubMed
35.Wu, J.H., Min, J.H., Liu, H.L., Cho, J.U., and Kim, Y.K.: Giant diamagnetism in AuFe nanoparticles. IEEE Trans. Magn. 45, 2442 (2009).Google Scholar
36.Vager, Z., and Naaman, R.: Bosons as the origin for giant magnetic properties of organic monolayers. Phys. Rev. Lett. 92, 087205 (2004).Google Scholar
37.Hernando, A., Crespo, P., and Garcia, M. A.: Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale. Phys. Rev. Lett. 96, 057206 (2006).CrossRefGoogle ScholarPubMed
38.Stiewe, A., Kemnitz, E., and Troyanov, S.: Synthese und Kristallstruktur von Hydrogensulfaten einwertiger Metalle − Ag(H3O)(HSO4)2, Ag2(HSO4)2(H2SO4), AgHSO4 und Hg2(HSO4)2. Z. Anorg. Allg. Chem. 625, 329 (1999).Google Scholar
39.Deng, B., Xu, A-W., Chen, G-Y., Song, R-Q., and Chen, L.P.: Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization process. J. Phys. Chem. B 110, 11711 (2006).CrossRefGoogle ScholarPubMed