Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T06:39:10.862Z Has data issue: false hasContentIssue false

Study of the impregnation of NiMo assisted by chelating agents for hydrodesulfurization-supported catalysts over mesoporous silica

Published online by Cambridge University Press:  21 September 2018

Karen A. Beltrán
Affiliation:
Departamento de Ingeniería y Química de los Materiales, Centro de Investigación en Materiales Avanzados S. C. (CIMAV), Chihuahua 31136, Chih, México
Lorena Álvarez-Contreras*
Affiliation:
Departamento de Ingeniería y Química de los Materiales, Centro de Investigación en Materiales Avanzados S. C. (CIMAV), Chihuahua 31136, Chih, México
Anabel De la Cruz
Affiliation:
Departamento de Ingeniería y Química de los Materiales, Centro de Investigación en Materiales Avanzados S. C. (CIMAV), Chihuahua 31136, Chih, México
Alfredo Aguilar-Elguezabal
Affiliation:
Departamento de Ingeniería y Química de los Materiales, Centro de Investigación en Materiales Avanzados S. C. (CIMAV), Chihuahua 31136, Chih, México
*
a)Address all correspondence to this author. e-mail: lorena.alvarez@cimav.edu.mx
Get access

Abstract

Molybdenum sulfide hydrotreating catalysts promoted with nickel over tridimensional mesoporous silica (KIT-6 post synthesis modified with alumina) were prepared with three different chelating agents. Citric acid and EDTA (ethylenediaminetetraacetic acid) were used as typical chelates and the new suggestion, polyacrylic acid as a polymeric agent. The catalysts were synthesized by the incipient wetness impregnation method, and two different activation methods were applied to determine the correlation between the chelating agent and activation conditions. The beneficial use of chelating agents was evaluated in their performance on HDS (hydrodesulfurization) of DBT (dibenzothiophene). To determine the properties of catalysts, nitrogen physisorption, X-ray diffraction, HRTEM (high-resolution transmission electron microscopy), and TGA (thermogravimetric analysis) were used. The beneficial effect of chelating Ni during impregnation to avoid NiSx formation and thus promoting NiMoS arrangement was clearly observed in the catalytic HDS performance, and the TGA analysis of Ni-chelate complexes also confirms this theory. The catalyst with the best performance in the HDS reaction of DBT was the synthesized with citric acid and a slow rate temperature sulfidation.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Song, C.: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211 (2003).CrossRefGoogle Scholar
Chianelli, R.R., Berhault, G., and Torres, B.: Unsupported transition metal sulfide catalysts: 100 years of science and application. Catal. Today 147, 275 (2009).CrossRefGoogle Scholar
Mendoza-Nieto, J.A., Robles-Méndez, F., and Klimova, T.E.: Support effect on the catalytic performance of trimetallic NiMoW catalysts prepared with citric acid in HDS of dibenzothiophenes. Catal. Today 250, 47 (2014).CrossRefGoogle Scholar
Vandillen, A., Terorde, R., Lensveld, D., Geus, J., and Debjong, K.: Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 216, 257 (2003).CrossRefGoogle Scholar
Munnik, P., de Jongh, P.E., and de Jong, K.P.: Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687 (2015).CrossRefGoogle ScholarPubMed
Shimizu, T., Hiroshima, K., Honma, T., Mochizuki, T., and Yamada, M.: Highly active hydrotreatment catalysts prepared with chelating agents. Catal. Today 45, 271 (1998).CrossRefGoogle Scholar
Coulier, L.: Hydrotreating Model Catalysts: From Characterization to Kinetics (University Press Facilities, Eindhoven University of Technology, 2001).Google Scholar
Vogelaar, B.: Deactivation of Hydroprocessing Catalysts (Ponsen & Looijen B.V., Wageningen, 1999).Google Scholar
Repo, E., Warchoł, J.K., Bhatnagar, A., Mudhoo, A., and Sillanpää, M.: Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res. 47, 4812 (2013).CrossRefGoogle ScholarPubMed
Lélias, M.A., van Gestel, J., Maugé, F., and van Veen, J.A.R.: Effect of NTA addition on the formation, structure and activity of the active phase of cobalt–molybdenum sulfide hydrotreating catalysts. Catal. Today 130, 109 (2008).CrossRefGoogle Scholar
Mochizuki, T., Hara, T., Koizumi, N., and Yamada, M.: Surface structure and Fischer–Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents. Appl. Catal., A 317, 97 (2007).CrossRefGoogle Scholar
Li, H., Li, M., Chu, Y., Liu, F., and Nie, H.: Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Appl. Catal., A 403, 75 (2011).CrossRefGoogle Scholar
Rana, M., Ramirez, J., Gutierrezalejandre, A., Ancheyta, J., Cedeno, L., and Maity, S.: Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent. J. Catal. 246, 100 (2007).CrossRefGoogle Scholar
Wu, H., Duan, A., Zhao, Z., Qi, D., Li, J., Liu, B., Jiang, G., Liu, J., Wei, Y., and Zhang, X.: Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent. Fuel 130, 203 (2014).CrossRefGoogle Scholar
Mazoyer, P., Geantet, C., Diehl, F., Loridant, S., and Lacroix, M.: Role of chelating agent on the oxidic state of hydrotreating catalysts. Catal. Today 130, 75 (2008).CrossRefGoogle Scholar
Al-Dalama, K. and Stanislaus, A.: Temperature programmed reduction of SiO2–Al2O3 supported Ni, Mo, and NiMo catalysts prepared with EDTA. Thermochim. Acta 520, 67 (2011).CrossRefGoogle Scholar
Eduardo, C., Vargas, S., and Heredia, R.: Modificación Superficial Mediante La Adición de Ácido Cítrico En Catalizadores NiWS Soportados En Alúmina-Titania (AT2) Para La Hidrodesulfuración de 4, 6 Dimetil Dibenzotiofeno (Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, 2012).Google Scholar
Calderón-Magdaleno, M.Á., Mendoza-Nieto, J.A., and Klimova, T.E.: Effect of the amount of citric acid used in the preparation of NiMo/SBA-15 catalysts on their performance in HDS of dibenzothiophene-type compounds. Catal. Today 220–222, 78 (2014).CrossRefGoogle Scholar
Kubota, T., Rinaldi, N., Okumura, K., Honma, T., Hirayama, S., and Okamoto, Y.: In situ XAFS study of the sulfidation of Co–Mo/B2O3/Al2O3 hydrodesulfurization catalysts prepared by using citric acid as a chelating agent. Appl. Catal., A 373, 214 (2010).CrossRefGoogle Scholar
Fan, Y., Xiao, H., Shi, G., Liu, H., Qian, Y., Wang, T., Gong, G., and Bao, X.: Citric acid-assisted hydrothermal method for preparing NiW/USY–Al2O3 ultradeep hydrodesulfurization catalysts. J. Catal. 279, 27 (2011).CrossRefGoogle Scholar
Fujikawa, T., Kimura, H., Kiriyama, K., and Hagiwara, K.: Development of ultra-deep HDS catalyst for production of clean diesel fuels. Catal. Today 111, 188 (2006).CrossRefGoogle Scholar
Escobar, J., Barrera, M.C., de los Reyes, J.A., Toledo, J.A., Santes, V., and Colín, J.A.: Effect of chelating ligands on Ni–Mo impregnation over wide-pore ZrO2–TiO2. J. Mol. Catal. A: Chem. 287, 33 (2008).CrossRefGoogle Scholar
Roma-Luciow, R., Sarraf, L., and Morcellet, M.: Complexes of poly(acrylic acid) with some divalent, trivalent and tetravalent metal ions. Eur. Polym. J. 37, 1741 (2001).CrossRefGoogle Scholar
Soni, K., Rana, B.S., Sinha, A.K., Bhaumik, A., Nandi, M., Kumar, M., and Dhar, G.M.: 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl. Catal., B 90, 55 (2009).CrossRefGoogle Scholar
Chaberek, S. Jr. and Martell, A.E.: Stability of metal chelates. I. Iminodiacetic and iminodipropionic acids. J. Am. Chem. Soc. 74, 5052 (1952).CrossRefGoogle Scholar
Peña, L., Valencia, D., and Klimova, T.: CoMo/SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene. Appl. Catal., B 147, 879 (2014).CrossRefGoogle Scholar
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051 (2015).CrossRefGoogle Scholar
Jo, C., Kim, K., and Ryoo, R.: Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous Mesoporous Mater. 124, 45 (2009).CrossRefGoogle Scholar
Ramírez, J. and Sánchez-Minero, F.: Support effects in the hydrotreatment of model molecules. Catal. Today 130, 267 (2008).CrossRefGoogle Scholar
Trejo, F., Rana, M., and Ancheyta, J.: CoMo/MgO–Al2O3 supported catalysts: An alternative approach to prepare HDS catalysts. Catal. Today 130, 327 (2008).CrossRefGoogle Scholar
Badoga, S., Mouli, K.C., Soni, K.K., Dalai, A.K., and Adjaye, J.: Beneficial influence of EDTA on the structure and catalytic properties of sulfided NiMo/SBA-15 catalysts for hydrotreating of light gas oil. Appl. Catal., B 125, 67 (2012).CrossRefGoogle Scholar