Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-24T22:04:33.527Z Has data issue: false hasContentIssue false

Study of enhanced phosphorus activity in n-type Si80Ge20 as a function of the doping process

Published online by Cambridge University Press:  31 January 2011

S. H. Han
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011–3020
B. A. Cook
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011–3020
Get access

Abstract

The electrical activity of phosphorus in Si80Ge20 alloys prepared by two nonconventional doping processes has been investigated over the temperature range 25–1250 °C. Both a solid state (mechanical alloying) and gaseous phase doping processes were found to extend the electrical activity of phosphorus in Si80Ge20 alloys beyond the reported maximum equilibrium value (2.1 × 1020/cm3) to 2.5–2.9 × 1020/cm3 within the temperature range 900 1200 °C. It is likely that this extended electrical activity of phosphorous is associated with a high density of defects. The enhanced electrical activity of phosphorus enabled Si80Ge20 alloys to have 300 to 1000 °C integrated average electrical power factors in the range 30.1–35.7 μW/cm-°C2.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dismukes, J. P., Ekstrom, L., Steigmeier, E. F., Kudman, I., and Beers, A. S., J. Appl. Phys. 35, 2899 (1964).CrossRefGoogle Scholar
2.Vandersande, J. W., Wood, C., and Draper, S. L., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 347.Google Scholar
3.Vandersande, J. W., Borshchevsky, A., Parker, J., and Wood, C., in Proceedings of the Seventh International Conference on Thermo-electrics, edited by Rao, K. R. (University of Texas at Arlington, Arlington, TX, 1988), p. 76.Google Scholar
4.Borshchevsky, A., Fleurial, J. P., and Vandersande, J. W., in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, edited by Nelson, P. A., Schertz, W. W., and Till, R. H., Reno, NV (1990), Vol. 2, p. 397.CrossRefGoogle Scholar
5.Fleurial, J. P., Borshchevsky, A., Vandersande, J.W., Scoville, N., and Bajgar, C., in Proceedings of the Ninth Symposium on Space Nuclear Power Systems, edited by El-Genk, M.S. and Hoover, M.D., Alburquerque, NM (1992), Vol. 1, p. 326.Google Scholar
6.Cook, B. A., Harringa, J. L., and Beaudry, B. J., in Modern Perspectives on Thermoelectrics and Related Materials, edited by Allred, D. D., Vining, C. B., and Slack, G. A. (Mater. Res. Soc. Symp. Proc. 234, Pittsburgh, PA, 1991), p. 111.Google Scholar
7.Benjamin, J. S., Metall. Trans. 1, 2943 (1970).CrossRefGoogle Scholar
8.Gilman, P. S. and Benjamin, J. S., Ann. Rev. Mater. Sci. 13, 279 (1983).CrossRefGoogle Scholar
9.Koch, C. C., Cavin, O. B., Mckamey, C. G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
10.Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4, 1292 (1989).CrossRefGoogle Scholar
11.Fech, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
12.Han, S. H., Gschneidner, K. A. Jr, and Beaudry, B. J., Scr. Mett. Mater. 25, 295 (1991).CrossRefGoogle Scholar
13.Han, S. H., Gschneidner, K. A. Jr, and Beaudry, B. J., J. Alloys and Compounds 181, 463 (1992).CrossRefGoogle Scholar
14.Van der Pauw, L. J., Phillips Res. Rep. 13, 1 (1958).Google Scholar
15.Ndlela, Z. and Bates, C., J. Rev. Sci. Instrum. 60, 3482 (1989).CrossRefGoogle Scholar
16.Cook, B. A., Tschetter, M. J., Harringa, J. L., Xu, Y., Beaudry, B. J., and Gschneidner, K. A. Jr, Advanced Thermoelectrics Program: Silicon-Germanium Thermoelectric Materials (Ames Laboratory Quarterly Report for United States Department of Energy Contract No. W-7405-ENG-82, dated 1 October through 31 December, 1989).Google Scholar
17.Meaden, G. T., Electrical Resistance of Metal (Plenum, New York, 1965), p. 143.CrossRefGoogle Scholar
18.Hensley, E. B., Phys. Rev. 23, 1122 (1952).Google Scholar
19.Kokos, G. B., Gschneidner, K. A. Jr, Cook, B. A., and Beaudry, B. J., J. Appl. Phys. 66, 2356 (1989).CrossRefGoogle Scholar
20.Amano, T., Beaudry, B. J., Gschneidner, K. A. Jr, Hartman, R., Vining, C. B., and Alexander, C. A., J. Appl. Phys. 62, 819 (1987).CrossRefGoogle Scholar
21.Dismukes, J. P., Ekstrom, L., and Paff, R. J., J. Phys. Chem. 68, 3021 (1964).CrossRefGoogle Scholar
22.Koch, C. C., Ann. Rev. Mater. Sci. 19, 121 (1989).CrossRefGoogle Scholar
23.Maurice, D. R. and Courtney, T. H., Metall. Trans. 21A, 289 (1990).CrossRefGoogle Scholar
24.Frank, W., Gösele, U., Mehrer, H., and Seeger, A., Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. S. (Academic Press Inc., Orlando, FL, 1984), p. 63.CrossRefGoogle Scholar
25.Cheng, L. J., Shyu, C.M., and Stika, K.M., in Defects in Semiconductors II, edited by Mahajan, S. and Corbett, J. W. (Mater. Res. Soc. Symp. Proc. 14, Elsevier Science Publishing, New York, 1983), p. 383.Google Scholar
26.Johnson, S. M., Yoo, K. C., Rosemeier, R. G., Soltani, P., and Lin, H. C., in Defects in Semiconductors II, edited by Mahajan, S. and Corbett, J. W. (Mater. Res. Soc. Symp. Proc. 14, Elsevier Science Publishing, New York, 1983), p. 357.Google Scholar
27. H. J. Queisser, in Defects in Semiconductors II, edited by Mahajan, S. and Corbett, J.W. (Mater. Res. Soc. Symp. Proc. 14, Elsevier Science Publishing, New York, 1983), p. 323.Google Scholar
28.Sieverts, G. D. and Ammerlaan, C. A., J. Inst. Phys. Conf. Ser. 13, 213 (1977).Google Scholar
29.Awadelkarim, O. O. and Monemar, B., Phys. Rev. B 38, 10116 (1988).CrossRefGoogle Scholar
30.Xu, H., Lindefelt, U., in Impurities, Defects, and Diffusion in Semiconductors: Bulk and Layered Structures, edited by Wolford, D. J., Bernholc, J., and Haller, E. E. (Mater. Res. Soc. Symp. Proc. 163, Pittsburgh, PA, 1990), p. 287.Google Scholar
31.Rosi, F. D., Solid-State Electron. 11, 833 (1968).CrossRefGoogle Scholar
32.Trumbore, F. A., Bell Syst. Tech. J. 39, 205 (1960).CrossRefGoogle Scholar
33.Fleurial, J. P., Vandersande, J. W., Scoville, N., Bajgar, C., and Beaty, J., in Proceedings of the Tenth Symposium on Space Nuclear Power Systems, edited by El-Genk, M.S. and Hoover, M.D., Albuquerque, NM (1993), Vol. 2, p. 759.Google Scholar
34.Cook, B. A., Harringa, J. L., Beaudry, B. J., and Han, S. H., in Proceedings of the Eleventh International Conference on Thermo-electrics, edited by Rao, K. R. (University of Texas at Arlington, Arlington, TX, 1992), p. 28.Google Scholar