Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T23:55:15.150Z Has data issue: false hasContentIssue false

Study of electrical and optical properties of ion-implanted polymers in relation to carbon structure

Published online by Cambridge University Press:  31 January 2011

Kazuo Sakamoto
Affiliation:
Riken (The Institute of Physical and Chemical Research), Hirosawa 2–1, Wako-shi, Saitama, 351–01, Japan
Masaya Iwaki
Affiliation:
Riken (The Institute of Physical and Chemical Research), Hirosawa 2–1, Wako-shi, Saitama, 351–01, Japan
Katsuo Takahashi
Affiliation:
Riken (The Institute of Physical and Chemical Research), Hirosawa 2–1, Wako-shi, Saitama, 351–01, Japan
Get access

Abstract

The relationship among electrical conductivity, optical properties, and carbon structure of ion-implanted polymers has been studied by optical transmission and Raman spectroscopy. The electrical conductivity, which depends not only on the ion dose but also on the dose rate in a complicated manner, was found to have a simple relation to the optical absorbance. By Raman spectroscopic analyses, the difference in the electrical conductivity was explained in terms of the difference in carbon structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshida, K. and Iwaki, M., Nucl. Instrum. Methods B19/20, 878 (1987).CrossRefGoogle Scholar
2. Ishitani, A., Shoda, K., Ishida, H., Watanabe, T., Yoshida, K., and Iwaki, M., Nucl. Instrum. Methods B39, 783 (1989).CrossRefGoogle Scholar
3. Venkatesan, T., Nucl. Instrum. Methods B7/8, 461 (1985).CrossRefGoogle Scholar
4. Hioki, T., Noda, S., Sugiura, M., Kakeno, M., Yamada, K., and Kawamoto, J., Appl. Phys. Lett. 43, 30 (1983).CrossRefGoogle Scholar
5. Wintersgill, M. C., Nucl. Instrum. Methods B1, 595 (1984).CrossRefGoogle Scholar
6. Davenas, J., Boiteux, G., and Xu, X.L., Nucl. Instrum. Methods B32, 136 (1988).CrossRefGoogle Scholar
7. Brom, H. B., Tomkiewcz, Y., Aviram, A., Broers, A., and Sunners, B., Solid State Commun. 35, 135 (1980).CrossRefGoogle Scholar
8. Burger, A., Fitzre, E., Heym, M., and Terwiesch, B., Carbon 13, 149 (1975).CrossRefGoogle Scholar
9. Nathan, M.I., Smith, J. E., and Tu, K. N., J. Appl. Phys. 45, 2370 (1974).CrossRefGoogle Scholar
10. Sato, S., Watanabe, H., Takahashi, K., and Iwaki, M., Radiat. Eff. Defects in Solids 124, 43 (1992).CrossRefGoogle Scholar
11. Sato, S. and Iwaki, M., Nucl. Instrum. Methods B32, 145 (1988).CrossRefGoogle Scholar
12. Sato, S., Watanabe, H., Abe, Y., and Iwaki, M., Nucl. Instrum. Methods B59/60, 1391 (1991).Google Scholar