Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T10:42:14.988Z Has data issue: false hasContentIssue false

Structure of nanocrystalline palladium and copper studied by small angle neutron scattering

Published online by Cambridge University Press:  31 January 2011

P. G. Sanders
Affiliation:
Materials Science and Engineering Department, Northwestern University, Evanston, Illinois 60208–3108
J. R. Weertman
Affiliation:
Materials Science and Engineering Department, Northwestern University, Evanston, Illinois 60208–3108
J. G. Barker
Affiliation:
Cold Neutron Research Facility, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure of nanocrystalline palladium and copper, made by inert gas condensation and compaction, was studied using small angle neutron scattering (SANS), optical microscopy, and scanning electron microscopy. The effects of annealing and warm compaction were also examined with these techniques. The SANS results were interpreted using a maximum entropy routine, combined with knowledge of the Archimedes density and hydrogen concentration determined by prompt gamma activation analysis (PGAA). Similar hydrogen concentrations were detected by SANS and PGAA. This hydrogen content, which was approximately 5 at. % in samples compacted at room temperature, was reduced by both annealing and warm compaction. Defects in several size classes were observed, including missing grain pores (≈1−50 nm diameter) and defects of micrometer size. Warm compaction produced a lower number density of pores in nanocrystalline palladium, which led to increased density. The observed structure was correlated with Vickers microhardness and fracture surface morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

References

REFERENCES

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
2.Zhu, X., Birringer, R., Herr, U., and Gleiter, H., Phys. Rev. B 35, 9085 (1987).CrossRefGoogle Scholar
3.Haubold, T., Birringer, R., Lengeler, B., and Gleiter, H., Phys. Lett. A 135, 461 (1989).Google Scholar
4.Eastman, J. A., Fitzsimmons, M. R., and Thompson, L. J., Philos. Mag. B 66, 667 (1992).Google Scholar
5.Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Metall. Mater. 24, 201 (1990).CrossRefGoogle Scholar
6.Stern, E. A., Siegel, R. W., Newville, M., Sanders, P. G., and Haskel, D., Phys. Rev. Lett. 75, 3874 (1995).Google Scholar
7.Jorra, E., Franz, H., Peisl, J., Wallner, G., Petry, W., Birringer, R., Gleiter, H., and Haubold, T., Philos. Mag. B 60, 159 (1989).Google Scholar
8.Epperson, J. E., Siegel, R. W., White, J.W., Eastman, J.A., Liao, Y. X. and Narayanasamy, A., in Neutron Scattering for Materials Science, edited by Shapiro, S. M., Moss, S. C., and Jorgenson, J. D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990), p. 87.Google Scholar
9.Sanders, P. G., Weertman, J.R., Barker, J.G., and Siegel, R. W., in Molecularly Designed Ultrafine/Nanostructural Materials, edited by Gonsalves, K.E., Chow, G-M., Xiao, T. D., and Cammarata, R.C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994), p. 319.Google Scholar
10.Sanders, P. G., Weertman, J.R., Barker, J.G., and Siegel, R. W., Scripta Metall. Mater. 29, 91 (1993).Google Scholar
11.Schaefer, H-E., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D. M., and Gleiter, H. (Kluwer, Dordrecht, 1993), p. 81.CrossRefGoogle Scholar
12.Würschum, R., Scheytt, M., and Schaefer, H-E., Phys. Status Solidi (a) 102, 119 (1987).CrossRefGoogle Scholar
13.Allen, A. J., Krueger, S., Long, G. G., Kerch, H. M., Hahn, H., and Skandan, G., Nanostruct. Mater. 7, 113 (1995).CrossRefGoogle Scholar
14.Sanders, P. G., Fougere, G. E., Thompson, L. J., Eastman, J. A., and Weertman, J. R., unpublished.Google Scholar
15.Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).Google Scholar
16.Kimoto, K., J. Phys. Soc. Jpn. 8, 762 (1953).Google Scholar
17.Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, 1981), p. 15.Google Scholar
18.Warren, B. E., X-ray Diffraction (Dover, New York, 1990), p. 251.Google Scholar
19.Sanders, P. G., Witney, A. B., Weertman, J.R., Valiev, R. Z., and Siegel, R. W., Mater. Sci. Eng. A 204, 7 (1995).Google Scholar
20.Ratcliffe, R. T., Brit. J. Appl. Phys. 16, 1193 (1965).Google Scholar
21.Lindstrom, R. M., J. Res. NIST 98, 127 (1993).CrossRefGoogle Scholar
22.Ehmann, W.D. and Ni, B-F., J. Radioanal. Nuc. Chem. 160, 169 (1992).Google Scholar
23.Hammouda, B., Krueger, S., and Glinka, C. J., J. Res. NIST 98, 31 (1993).Google Scholar
24.Porod, G., in Small Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic, London, 1982), p. 17.Google Scholar
25.Guinier, A. and Fournet, F., Small Angle Scattering of X-rays (Wiley, New York, 1955).Google Scholar
26.Potton, J. A., Daniell, G. J., and Rainford, B. D., J. Appl. Crystal-logr. 21, 891 (1988).Google Scholar
27.Jemian, P. R., personal communication.Google Scholar
28.Allen, A. J., J. Appl. Crystallogr. 24, 624 (1991).Google Scholar
29.Jemian, P. R. and Allen, A. J., J. Appl. Crystallogr. 27, 693 (1994).CrossRefGoogle Scholar
30.Kizuka, T., Nakagami, Y., Ohata, T., Kanazawa, I., Ichinose, H., Murakami, H., and Ishida, Y., Philos. Mag. A 69, 551 (1994).Google Scholar
31.Tschöpe, A. and Birringer, R., Philos. Mag. B 68, 223 (1993).Google Scholar
32.Reed, J. S., Introduction to the Principles of Ceramic Processing (Wiley, New York, 1988), p. 449.Google Scholar
33.Courtney, T. H., Mechanical Behavior of Materials (McGraw-Hill, New York, 1990), p. 649.Google Scholar
34.Qin, X. Y., Wu, X J., and Zhang, L. D., Nanostruct. Mater. 5, 101 (1995).Google Scholar
35.Nieman, G. W., Weertman, J.R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).Google Scholar
36.Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
37.Fougere, G. E., Weertman, J. R., Siegel, R. W., and Kim, S., Scripta Metall. Mater. 26, 1879 (1992).Google Scholar
38.Li, W. B., Henshall, J.L., Hooper, R. M., and Easterling, K. E., Acta Metall. 39, 3099 (1991).Google Scholar