Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T21:21:43.497Z Has data issue: false hasContentIssue false

Structure and Thermal Stability of Nanostructured Iron-doped Zirconia Prepared by High-energy Ball Milling

Published online by Cambridge University Press:  31 January 2011

J. Z. Jiang
Affiliation:
Department of Physics, Building 307, Technical University of Denmark, DK-2800, Lyngby, Denmark
F. W. Poulsen
Affiliation:
Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark
S. Mørup
Affiliation:
Department of Physics, Building 307, Technical University of Denmark, DK-2800, Lyngby, Denmark
Get access

Abstract

Fully stabilized cubic zirconia doped with iron oxide has been synthesized by high-energy ball milling from powder mixtures of monoclinic zirconia and hematite. It is found that the iron ions dissolved in cubic ZrO2 are in substitutional positions with a maximum solubility of approximately 18.5 mol% α–Fe2O3. The unit-cell volume of the cubic ZrO2 phase decreases with increasing iron content. During heating the cubic-to-tetragonal transition occurs at approximately 827 °C and the tetragonal-to-monoclinic transition seems to be absent at temperatures below 950 °C. During cooling the tetragonal-to-monoclinic transition occurs at 900–1100 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ruh, R., Mazdiyashi, K. S., Valentine, P. G., and Bielstein, H. O., J. Am. Ceram. Soc. 67, C190 (1984).Google Scholar
2.Structure and Properties of Ceramics, edited by Swain, M. V. (VCH Publishers Inc., Weinheim, 1994), Vol. 11, p. 103.Google Scholar
3. See, for example, Series of conference proceedings on the Science and Technology of Zirconia (American Ceramic Society, Vols., I–IV, 1981, 1984, 1988, 1992).Google Scholar
4.Subbarao, E.C., in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia I, edited by Heuer, A. H. and Hobbs, L.W. (American Ceramic Society, Westerville, OH, 1981), pp. 124.Google Scholar
5.Koch, C. C., NanoStructured Mater. 2, 109 (1993);CrossRefGoogle Scholar
Jiang, J. Z., Gente, C., and Bormann, R., Mater. Sci. Eng. A 242, 268 (1998);CrossRefGoogle Scholar
Jiang, J.Z., Lin, R., Mørup, S., Nielsen, K., Poulsen, F. W., Berry, F. J., and Clausen, R., Phys. Rev. B 55, 11 (1997).CrossRefGoogle Scholar
6.Michel, D., Faudot, F., Gaffet, E., and Mazerolles, L., J. Am. Ceram. Soc. 76, 2884 (1993);CrossRefGoogle Scholar
Michel, D., Mazerolles, L., Berthet, P., and Gaffet, E., Eur. J. Solid State Inorg. Chem. 32, 673 (1995).Google Scholar
7.Chen, Y.L., Qi, M., Wu, J.S., Wang, D. H., and Yang, D. Z., Appl. Phys. Lett. 65, 303 (1994);CrossRefGoogle Scholar
Chen, Y.L., Qi, M., Yang, D.Z., and Wu, J. S., Mater. Sci. Eng. A 183, L9 (1994);CrossRefGoogle Scholar
Chen, Y. L., Zhu, M., Qi, M., Yang, D.Z., and Fecht, H. J., Mater. Sci. Forum 179–181, 133 (1995).CrossRefGoogle Scholar
8.Tonejc, A.M. and Tonejc, A., Mater. Sci. Forum 225–227, 497 (1996).CrossRefGoogle Scholar
9.Boutz, M. M., Winnubst, A. J.A, Hartgers, F., and Burggraaf, A.J., J. Mater. Sci. 29, 5374 (1994).CrossRefGoogle Scholar
10.Verkerk, M. J., Winnubst, A. J. A., and Burggraaf, A. J., J. Mater. Sci. 17, 3113 (1982).CrossRefGoogle Scholar
11.Hoffmann, A. and Fischer, W.A., Z. Phys. Chem. NF 17, 30 (1958).CrossRefGoogle Scholar
12.Davison, S., Kershaw, R., Dwight, K., and Wold, A., J. Solid State Chem. 73, 47 (1988).CrossRefGoogle Scholar
13.Berry, F. J., Loretto, M. H., and Smith, M. R., J. Solid State Chem. 83, 91 (1989);CrossRefGoogle Scholar
Berry, F. J., Jobsen, S., and Smith, M. R., Hyperfine Interactions 46, 607 (1989).CrossRefGoogle Scholar
14.Li, P., Chen, I-W., and Penner-Hahn, J. E., J. Am. Ceram. Soc. 77, 118 (1994).CrossRefGoogle Scholar
15.Kiminami, R. H. G., J. Mater. Sci. Lett. 9, 373 (1990).CrossRefGoogle Scholar
16.Jiang, J. Z., Zhou, Y. X., Mørup, S., and Koch, C. B., Nanostructured Mater. 7, 401 (1996);CrossRefGoogle Scholar
Mørup, S. and Topsøe, H., Appl. Phys. 11, 63 (1976).CrossRefGoogle Scholar
17.Jiang, J. Z., Lin, R., Nielsen, K., Mørup, S., Rickerby, D. G., and Clausen, R., Phys. Rev. B 55, 14 830 (1997).Google Scholar
18.The Rietveld Method, edited by Young, R. A. (International Union of Crystallography, Oxford University Press, 1993).CrossRefGoogle Scholar
19.Bailey, J. E., Lewis, D., Librant, Z.M., and Porter, L.J., Trans. J. Brit. Ceram. Soc. 71, 25 (1972).Google Scholar
20.Schroeer, D. and Nininger, R. C. Jr, Phys. Rev. Lett. 19, 632 (1967).CrossRefGoogle Scholar
21.Jiang, J. Z. and Mørup, S., unpublished.Google Scholar
22.Wilhelm, R.V. Jr, and Howarth, D. S., Am. Ceram. Soc. Bull. 58, 1185 (1979);Google Scholar
Karavaev, J. N., Palguev, S. F., and Neujmin, A. D., in High Tech. Ceramics, edited by Vincenzini, P., (Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1987), p. 247.Google Scholar
23.Karas, A., Sossen, R., and Cannon, W.R., Presentation (3-JV-90) at the 92nd Annual Meeting of the American Ceramic Society, Dallas, Texas, 2226 April (1990).Google Scholar
24.Ingel, R.P. and Lewis, D. III, J. Am. Ceram. Soc. 69, 325 (1986).CrossRefGoogle Scholar
25.Williamson, G. K. and Hall, W.H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
26.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
27.Kim, D. J., J. Am. Ceram. Soc. 72, 1415 (1989).CrossRefGoogle Scholar
28.Glushkova, V. B., Hanic, F., and Sazonova, L.V., Ceram. Int. 4, 176 (1978).CrossRefGoogle Scholar
29.Li, P., Chen, I. W., and Penner-Hahn, J. E., J. Am. Ceram. Soc. 77, 118 (1994).CrossRefGoogle Scholar
30.Manner, R., Ivers-Tiffee, E., and Wersing, W., Proc. 2nd Int. Symp. on SOFC, Greece, edited by Gross, F., Zegers, P., Singhal, S.C., and Yamamoto, O. (CEC Publ. No. EUR 13564, 1991), p. 715.Google Scholar