Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T13:19:45.524Z Has data issue: false hasContentIssue false

Stressed solid-phase epitaxial growth of (011) Si

Published online by Cambridge University Press:  03 March 2011

K.S. Jones
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
R. Gwilliam
Affiliation:
Nodus Accelerator Laboratory, Advanced Technology Institute, Surrey Ion Beam Centre, Guildford, Surrey GU2 7XH, United Kingdom
Get access

Abstract

The solid-phase epitaxial growth kinetics of amorphized (011) Si with application of in-plane uniaxial stress to magnitude of 0.9 ± 0.1 GPa were studied. Tensile stresses did not appreciably change the growth velocity compared with the stress-free case, whereas compression tended to retard the growth velocity to approximately one-half the stress-free value. The results are explained using a prior generalized atomistic model of stressed solid-solid phase transformations. In conjunction with prior observations of stressed solid-phase epitaxial growth of (001) Si, it is advanced that the activation volume tensor associated with ledge migration may be substrate orientation-dependent.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Olsen, G.L., Roth, J.A.: Kinetics of solid phase crystallization of amorphous silicon. Mater. Sci. Rep. 3, 1 (1988)CrossRefGoogle Scholar
2.Hu, S.M.: Stress-related problems in silicon technology. J. Appl. Phys. 70, (6)R53 (1991)Google Scholar
3.Nygren, E., Aziz, M.J., Turnbull, D.: Effect of pressure on the solid phase epitaxial regrowth rate of Si. Appl. Phys. Lett. 47, (3)232 (1985)CrossRefGoogle Scholar
4.Lu, G-Q., Nygren, E., Aziz, M.J., Turnbull, D., White, C.W.: Interferometric measurement of the pressure-enhanced crystallization rate of amorphous Si. Appl. Phys. Lett. 54, 2583 (1989)CrossRefGoogle Scholar
5.Lu, G-Q., Nygren, E., Aziz, M.J.: Pressure-enhanced crystallization kinetics of amorphous Si and Ge: Implications for point-defect mechanisms. J. Appl. Phys. 70, (10)5323 (1991)Google Scholar
6.Chaki, T.K.: Hydrostatic pressure-enhanced solid-phase epitaxy. Philos. Mag. Lett. 63, (6)303 (1991)Google Scholar
7.Chaki, T.K.: Solid-phase epitaxy—Effects of irradiation, dopant, and pressure. Phys. Status Solidi A 142, (1)153 (1994)CrossRefGoogle Scholar
8.Barvosa-Carter, W.: Stress effects on kinetics and interfacial roughening during solid phase epitaxy., Ph.D. Thesis 1997Google Scholar
9.Aziz, M.J., Sabin, P.C., Lu, G-Q.: The activation strain tensor Nonhydrostatic effects on crystal-growth kinetics. Phys. Rev. B: Condens. Matter 44, (18)9812 (1991)CrossRefGoogle ScholarPubMed
10.Rudawski, N.G., Jones, K.S., Gwilliam, R.: Kinetics and morphological instabilities of stressed solid-solid phase transformations. Phys. Rev. Lett. 100, (16)165501 (2008)Google Scholar
11.Rudawski, N.G., Jones, K.S., Gwilliam, R.: Stressed solid-phase epitaxial growth of ion-implanted amorphous silicon. Mater. Sci. Eng., R 61, 40(2008)CrossRefGoogle Scholar
12.Saenger, K.L., de Souza, J.P., Fogel, K.E., Ott, J.A., Reznicek, A., Sung, C.Y., Sadana, D.K., Yin, H.: Amorphization/templated recrystallization method for changing the orientation of single-crystal silicon: An alternative approach to hybrid orientation substrates. Appl. Phys. Lett. 87, 221911 (2005)Google Scholar
13.Saenger, K.L., de Souza, J.P., Fogel, K.E., Ott, J.A., Sung, C.Y., Sadana, D.K., Yin, H.: A study of trench-edge defect formation in (001) and (011) silicon recrystallized by solid phase epitaxy. J. Appl. Phys. 101, 024908 (2006)Google Scholar
14.Yang, M., Chan, V.W.C., Chan, K.K., Shi, L., Fried, D.M., Stathis, J.H., Chou, A.I., Gusev, E., Ott, J.A., Burns, L.E., Fischetti, M.V., Ieong, M.: Hybrid orientation technology (HOT): Opportunities and challenges. IEEE Trans. Electron Devices 53, (5)965 (2005)Google Scholar
15.Sato, T., Takeishi, Y., Hara, H.: Effects of crystallographic orientation on mobility, surface state density, and noise in p-type inversion layers on oxidized silicon surfaces. Jpn. J. Appl. Phys. 8, (5)588 (1969)CrossRefGoogle Scholar
16.Colman, D., Bate, R.T., Mize, J.P.: Mobility anisotropy and piezoresistance in silicon p-type inversion layers. J. Appl. Phys. 39, (4)1923 (1968)Google Scholar
17.Csepregi, L., Kennedy, E.F., Sigmon, T.W.: Substrate-orientation dependence of the epitaxial regrowth rate of Si-implanted amorphous Si. J. Appl. Phys. 49, (7)3906 (1978)Google Scholar
18.Rudawski, N.G., Jones, K.S., Gwilliam, R.: Solid phase epitaxy in uniaxially stressed (001) Si. Appl. Phys. Lett. 91, 172103 (2007)CrossRefGoogle Scholar
19.Johnson, B.C., McCallum, J.C.: Dopant-enhanced solid-phase epitaxy in buried amorphous silicon layers. Phys. Rev. B 76, (4)045206 (2007)Google Scholar
20.Jones, K.S., Prussin, S., Weber, E.R.: A systematic analysis of defects in ion-implanted silicon. Appl. Phys. A 45, (1)1(1988)CrossRefGoogle Scholar
21.Barvosa-Carter, W., Aziz, M.J., Gray, L.J., Kaplan, T.: Kinetically driven growth instability in stressed solids. Phys. Rev. Lett. 81, (7)1445 (1998)CrossRefGoogle Scholar
22.Barvosa-Carter, W., Aziz, M.J., Phan, A-V., Kaplan, T., Gray, L.J.: Interfacial roughening during solid phase epitaxy: Interaction of dopant, stress, and anisotropy effects. J. Appl. Phys. 96, (10)5462 (2004)CrossRefGoogle Scholar
23.Barvosa-Carter, W., Aziz, M.J.: Time-resolved measurements of stress effects on solid-phase epitaxy of intrinsic and doped Si. Appl. Phys. Lett. 79, 356 (2001)CrossRefGoogle Scholar
24.Rudawski, N.G., Jones, K.S., Gwilliam, R.: Dopant-stress synergy in Si solid-phase epitaxy. Appl. Phys. Lett. 92, 232110 (2008)CrossRefGoogle Scholar
25.Spaepen, F.: A structural model for the interface between amorphous and crystalline Si or Ge. Acta Metall. 26, 1167 (1978)CrossRefGoogle Scholar
26.Williams, J.S., Elliman, R.G., Brown, W.L., Seidel, T.E.: Dominant influence of beam-induced interface rearrangement on solid-phase epitaxial crystallization of amorphous silicon. Phys. Rev. Lett. 55, (14)1482 (1985)CrossRefGoogle ScholarPubMed
27.Asaro, R.J., Suresha, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 (2005)Google Scholar
28.Wang, Y.M., Hamza, A.V., Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006)Google Scholar