Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T09:21:58.677Z Has data issue: false hasContentIssue false

Strain rate sensitivity and deformation mechanism of nano-lamellar γ-Ni/Ni5Zr eutectic at room temperature

Published online by Cambridge University Press:  03 August 2020

Anushree Dutta
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal721302, India
Jayanta Das*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal721302, India
*
a)Address all correspondence to this author. e-mail: j.das@metal.iitkgp.ac.in
Get access

Abstract

The strain rate sensitivity (m) of (Ni0.92Zr0.08)100xAlx (0 ≤ x ≤ 4 at.%) eutectic with varying average lamellae thickness (λw) in the range of 39–275 nm has been investigated in the strain rate range of 8 × 10−5 and 8 × 10−3 s−1 at room temperature. The microstructure of the nano-/ultrafine eutectic composites (NECs) is comprised of alternate lamellae of fcc γ-Ni and Ni5Zr along with 20–31 vol% γ-Ni dendritic phase. The m value of all the investigated NECs lies between 0.0080 and 0.0102, whereas the activation volume (V*) has been estimated to be between 29.7b3 and 49.8b3. High-resolution transmission electron microscopy studies confirm the dislocation-mediated plastic flow including dislocation–lamellae interaction, and their pile-up at the interface, which result in the narrow variation of m for a wide range of λw due to its interlocked lamellar microstructure. A mathematical model has been developed to correlate the m with λw for the experimented NECs with wide microstructure length scale and solute content.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wei, Y., Bower, A.F., and Gao, H.: Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56, 1741 (2008).CrossRefGoogle Scholar
Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71 (2004).CrossRefGoogle Scholar
Armstrong, R.W.: Hall–Petch description of nanopolycrystalline Cu, Ni and Al strength levels and strain rate sensitivities. Philos. Mag. 96, 3097 (2016).CrossRefGoogle Scholar
Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).CrossRefGoogle Scholar
Torre, F.D., Swygenhoven, H.V., and Victoria, M.: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).CrossRefGoogle Scholar
Izadi, E. and Rajagopalan, J.: Texture dependent strain rate sensitivity of ultrafine-grained aluminum films. Scr. Mater. 114, 65 (2016).CrossRefGoogle Scholar
Sabirov, I., Barnett, M.R., Estrin, Y., and Hodgson, P.D.: The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scr. Mater. 61, 181 (2009).CrossRefGoogle Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).CrossRefGoogle Scholar
Hayes, R.W., Witkin, D., Zhou, F., and Lavernia, E.J.: Deformation and activation volumes of cryomilled ultrafine-grained aluminium. Acta Mater. 52, 4259 (2004).CrossRefGoogle Scholar
Fritz, R., Wimler, D., Leitner, A., Maier-Kiener, V., and Kiener, D.: Dominating deformation mechanisms in ultrafine-grained chromium across length scales and temperatures. Acta Mater. 140, 176 (2017).CrossRefGoogle Scholar
Kammers, A.D., Wongsa-Ngam, J., Langdon, T.G., and Daly, S.: The microstructure length scale of strain rate sensitivity in ultrafine-grained aluminium. J. Mater. Res. 30, 981 (2015).CrossRefGoogle Scholar
Maier, V., Schunk, C., Göken, M., and Durst, K.: Microstructure-dependent deformation behaviour of bcc-metals – Indentation size effect and strain rate sensitivity. Philos. Mag. 95, 1766 (2015).CrossRefGoogle Scholar
Glezer, A.M., Kozlov, E.V., Koneva, N.A., Popova, N.A., and Kurzina, I.A.: Plastic Deformation of Nanostructured Materials (CRC Press, Boca Raton, London, 2017); pp. 133135.Google Scholar
Cheng, G.M., Jian, W.W., Xu, W.Z., Yuan, H., Millett, P.C., and Zhu, Y.T.: Grain size effect on deformation mechanisms of nanocrystalline bcc metals. Mater. Res. Lett. 1, 26 (2013).CrossRefGoogle Scholar
Jang, D. and Atzmon, M.: Grain-size dependence of plastic deformation in nanocrystalline Fe. J. Appl. Phys. 93, 9282 (2003).CrossRefGoogle Scholar
Zhou, Q., Zhao, J., Xie, J.Y., Wang, F., Huang, P., Lu, T.J., and Xu, K.W.: Grain size dependent strain rate sensitivity in nanocrystalline body-centered cubic metal thin films. Mater. Sci. Eng. A 608, 184 (2014).CrossRefGoogle Scholar
Wang, Y., Liu, Y., and Wang, J.T.: Investigation on activation volume and strain-rate sensitivity in ultrafine-grained tantalum. Mater. Sci. Eng. A 635, 86 (2015).CrossRefGoogle Scholar
Wu, D., Wang, X.L., and Nieh, T.G.: Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals. J. Phys. D Appl. Phys. 47, 175303 (2014).CrossRefGoogle Scholar
Jia, D., Ramesh, K.T., and Ma, E.: Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater. 51, 3495 (2003).CrossRefGoogle Scholar
Malow, T.R. and Koch, C.C.: Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition. Metall. Mater. Trans. A 29A, 2285 (1998).CrossRefGoogle Scholar
Nemat-Nasser, S., Guo, W., and Liu, M.: Experimentally-based micromechanical modelling of dynamic response of molybdenum. Scr. Mater. 40, 859 (1999).CrossRefGoogle Scholar
He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
Maity, T., Singh, A., Dutta, A., and Das, J.: Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites. Mater. Sci. Eng. A 666, 72 (2016).CrossRefGoogle Scholar
Maity, T., Roy, B., and Das, J.: Mechanism of lamellae deformation and phase rearrangement in ultrafine β-Ti/FeTi eutectic composites. Acta Mater. 97, 170 (2015).CrossRefGoogle Scholar
Ngan, A.H.W., Pethica, J.B., and Ng, H.P.: Strain-rate sensitivity of hardness of nanocrystalline Ni75at.%Al25at.% alloy film. J. Mater. Res. 18, 382 (2003).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Kim, Y.S., Park, H.J., Maity, T., Chawake, N., Bian, X.L., Sarac, B., Park, J.M., Prashanth, K.G., Park, J.Y., Eckert, J., and Kim, K.B.: Cooperative deformation behavior between the shear band and boundary sliding of an Al-based nanostructure-dendrite composite. Mater. Sci. Eng. A 735, 81 (2018).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Park, J.M., Eckert, J., and Kim, K.B.: Microstructure and mechanical properties of hierarchical multi-phase composites based on Al-Ni-type intermetallic compounds in the Al-Ni-Cu-Si alloy system. J. Alloys Compd. 749, 205 (2018).CrossRefGoogle Scholar
Kim, J.T., Hong, S.H., Park, H.J., Kim, Y.S., Suh, J.Y., Lee, J.K., Park, J.M., Maity, T., Eckert, J., and Kim, K.B.: Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys. Sci. Rep. 7, 39959 (2017).CrossRefGoogle ScholarPubMed
Kim, J.T., Lee, S.W., Hong, S.H., Park, H.J., Park, J.-Y., Lee, N., Seo, Y., Wang, W.-M., Park, J.M., and Kim, K.B.: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 92, 1038 (2016).CrossRefGoogle Scholar
Dutta, A. and Das, J.: Superior oxidation resistance of ultrafine Ni-Zr-(Al) eutectic composites in the temperature range of 500–900°C. J. Alloys Compd. (2020). doi:10.1016/j.jallcom.2020.155998.Google Scholar
Neogi, A., He, L., and Abdolrahim, N.: Atomistic simulations of shock compression of single crystal and core-shell Cu@Ni nanoporous metals. J. Appl. Phys. 126, 015901 (2019).CrossRefGoogle Scholar
Alkorta, J. and Sevillano, J.G.: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultrafine grain (equal channel angular-pressed) eutectic Sn-Bi alloy. J. Mater. Res. 19, 282 (2004).CrossRefGoogle Scholar
Cline, H.E. and Lee, D.: Strengthening of lamellar vs. equiaxed Ag-Cu eutectic. Acta Metall. 18, 315 (1970).CrossRefGoogle Scholar
Shohji, I., Yoshida, T., Takahashi, T., and Hioki, S.: Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity. Mater. Sci. Eng. A 366, 50 (2004).CrossRefGoogle Scholar
Geckinli, A.E. and Barrett, C.R.: Superplastic deformation of the Pb-Sn eutectic. J. Mater. Sci. 11, 510 (1976).CrossRefGoogle Scholar
Edalati, K., Masuda, T., Arita, M., Furui, M., Sauvage, X., Horita, Z., and Valiev, R.Z.: Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci. Rep. 7, 2662 (2017).CrossRefGoogle Scholar
Baker, H.: Alloy Phase Diagram, ASM Handbook, Vol. 3 (ASM International, OH, 1992).Google Scholar
Maity, T. and Das, J.: High strength Ni-Zr-(Al) nanoeutectic composites with large plasticity. Intermetallics 63, 51 (2015).CrossRefGoogle Scholar
Dutta, A., Jana, P.P., and Das, J.: Effect of cooling rate and composition on the microstructure and mechanical properties of (Ni0.92Zr0.08)100-xAlx (0≤x≤4 at.%) ultrafine eutectic composites. J. Mater. Res. 34, 1704 (2019).CrossRefGoogle Scholar
Bailey, J.E. and Hirsch, P.B.: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5, 485 (1960).CrossRefGoogle Scholar
Graça, S., Colaço, R., Carvalho, P.A., and Vilar, R.: Determination of dislocation density from hardness measurements in metals. Mater. Lett. 62, 3812 (2008).CrossRefGoogle Scholar
Callister, W.D. Jr., and Rethwisch, D.G.: Materials Science and Engineering: An Introduction, 2nd ed. (Wiley India Pvt. Ltd., New Delhi, India, 2014).Google Scholar
Jonnalagadda, K., Karanjgaokar, N., Chasiotis, I., Chee, J., and Peroulis, D.: Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater. 58, 4674 (2010).CrossRefGoogle Scholar
Valiev, R.Z., Kozlov, E.V., Ivanov, Y.F., Lian, J., Nazarov, A.A., and Baudelet, B.: Deformation behaviour of ultra-fine-grained copper. Acta Metall. 42, 2467 (1994).CrossRefGoogle Scholar
Lian, J. and Baudelet, B.: A modified Hall-Petch relationship for nanocrystalline materials. Nanostruct. Mater. 2, 415 (1993).CrossRefGoogle Scholar
Gu, C.D., Lian, J.S., Jiang, Q., and Zheng, W.T.: Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D Appl. Phys. 40, 7440 (2007).CrossRefGoogle Scholar
Gu, Y., Xiang, Y., Srolovitz, D.J., and El-Awady, J.A.: Self-healing of low angle grain boundaries by vacancy diffusion and dislocation climb. Scr. Mater. 155, 155 (2018).CrossRefGoogle Scholar
Du, J., Wen, B., Melnik, R., and Kawazoe, Y.: First-principles studies on structural, mechanical, thermodynamic and electronic properties of Ni5Zr intermetallic compounds. Intermetallics 54, 110 (2014).CrossRefGoogle Scholar
Maity, T., Prashanth, K.G., Balçi, Ö, Wang, Z., Jia, Y.D., and Eckert, J.: Plastic deformation mechanisms in severely strained eutectic high entropy composites explained via strain rate sensitivity and activation volume. Compos. B Eng. 150, 7 (2018).CrossRefGoogle Scholar
Wang, W., Ma, Y., Yang, M., Jiang, P., Yuan, F., and Wu, X.: Strain rate effect on tensile behavior for a high specific strength steel: From quasi-static to intermediate strain rates. Metals 8, 11 (2018).CrossRefGoogle Scholar
Beukel, A.V.D. and Kocks, U.F.: The strain dependence of static and dynamic strain-aging. Acta Metall. 30, 1027 (1982).CrossRefGoogle Scholar
Beukel, A.V.D.: Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi 30, 197 (1975).CrossRefGoogle Scholar
Huang, C.X., Hu, W.P., and Wang, Q.Y.: Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu-11.1 at% Al alloy with low stacking fault energy. Mater. Sci. Eng. A 611, 274 (2014).CrossRefGoogle Scholar