Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T03:55:27.767Z Has data issue: false hasContentIssue false

Stability of CsCl-type intermetallic compounds under ball milling

Published online by Cambridge University Press:  31 January 2011

E. Hellstern
Affiliation:
W. M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
H. J. Fecht
Affiliation:
W. M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
Z. Fu
Affiliation:
W. M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
W. L. Johnson
Affiliation:
W. M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

We investigated the stability of the CsCl-type compounds AlRu, SiRu, NiTi, and CuEr under heavy deformation by high-energy ball milling. As a result, nanocrystalline intermetallic compounds have been synthesized with a microstructure showing a mixture of highly strained crystallites (5–12 nm) with random orientation. Thermal analysis of the samples indicates stored deformation energies of 5–10 kJ/mole stored by incorporation of lattice defects, chemical disorder and grain boundaries, and an increase of the heat capacity of up to 13%. Chemical disordering of the crystal is monitored by means of the long-range order parameter. The observed decrease in chemical order can be explained by the high grain boundary density of nanocrystalline metals.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2Johnson, W.L. and Fecht, H. J.J. Less-Comm. Met. 145, 63 (1988).CrossRefGoogle Scholar
3Koch, C.C.Cavin, O.B.McKamey, C.G. and Scarbrough, J.O.Appl. Phys. Lett. 43, 1017 (1983); R. B. Schwarz R. R. Petrich and C.K. Saw J. Non-Cryst. Solids 76, 281 (1985); E. Hellstern and L. Schultz Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
4Ermakov, A. E.Yurchikov, E.E. and Barinov, V. A.Fiz. Metal. Metalloved. 52, 1184 (1981); R.B. Schwarz and C. C. Koch Appl. Phys. Lett. 49, 146 (1986); A.W. Weeber H. Bakker and F. R. De Boer, Europhys. Lett. 2, 445 (1986).Google Scholar
5Schwarz, R. B. and Petrich, P. P.J. Less-Comm. Met. 140, 171 (1988).Google Scholar
6Askenazy, P. D.Kamenetzky, E. A.Tanner, L. E. and Johnson, W. L.J. Less-Comm. Met. 140, 149 (1988).CrossRefGoogle Scholar
7Hellstern, E.Fecht, H. J.Fu, Z. and Johnson, W. L.J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
8Hellstern, E.Fecht, H. J.Garland, C. and Johnson, W. L.MRS Symp. Proc, Multicomponent ultrafine microstructures, edited by Kear, B. H.Polk, D. E. and Siegel, R. W. 132 (1989).Google Scholar
9Nastasi, M.Lilienfeld, D.Johnson, H. H. and Mayer, J. W.J. Appl. Phys. 59, 4011 (1986).CrossRefGoogle Scholar
10Brimhall, J. L.Kissinger, H. E. and Chariot, L. A.Radiat. Eff. 77, 237 (1983).CrossRefGoogle Scholar
11We irradiated a thin AlRu-film with 1 dpa Ne atoms at liquid nitrogen temperature and observed no amorphization.Google Scholar
12Bever, M. B.Holt, D. L. and Titchener, A. L.Prog. Mater. Sci. 17, 1 (1973).CrossRefGoogle Scholar
13Birringer, R.Gleiter, H.Klein, H.P., and Marquardt, P.Phys. Lett. 102A, 365 (1984).Google Scholar
14Rupp, J. and Birringer, R.Phys. Rev. B36, 7888 (1987).Google Scholar
15Fecht, H.J.Hellstern, E.Fu, Z. and Johnson, W.L. Metall. Trans, (in press).Google Scholar
16Luzzi, D.E. and Meshii, M.J. Less-Comm. Met. 140, 193 (1988).CrossRefGoogle Scholar
17Rigney, D. A.Ann. Rev. Mater. Sci. 18, 141 (1988).CrossRefGoogle Scholar
18Walker, C.B. and Keaton, D.T.Phys. Rev. 130, 1726 (1963); J. C. Toledano and P. Toledano, The Landau Theory of Phase Transitions (World Sci. Publ. Co., Singapore, 1987), p. 155.CrossRefGoogle Scholar
19Schulz, R.Trudeau, M.Huot, J. Y. and Neste, A. Van, Phys. Rev. Lett. 62, 2849 (1989).Google Scholar
20The values are estimated using Richard's rule ΔHf = 12.5 J/K mole. Tm with ΔHf as heat of fusion and Tm as melting temperature; see Goodman, D.Cahn, J.W. and Bennett, L.H.Bull. Alloy Phase Diagr. 2, 29 (1981).Google Scholar