Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-25T04:50:09.605Z Has data issue: false hasContentIssue false

Spectral hole burning in sol-gel-derived Eu3+-doped film

Published online by Cambridge University Press:  31 January 2011

Masayuki Nogami
Affiliation:
Nagoya Institute of Technology, Showa Nagoya, 466–8555, Japan
Tomotaka Ishikawa
Affiliation:
Nagoya Institute of Technology, Showa Nagoya, 466–8555, Japan
Tomokatsu Hayakawa
Affiliation:
Nagoya Institute of Technology, Showa Nagoya, 466–8555, Japan
Tomokatsu Hayakawa
Affiliation:
Nagoya Institute of Technology, Showa Nagoya, 466–8555, Japan
Get access

Abstract

The sol-gel technique was applied to the preparation of Eu3+ ion–doped films, which showed persistent spectral hole burning. A gel film of ∼3500-nm thickness was prepared by dip-coating of the solution synthesized from Si(OC2H5)4, CH3Si(OC2H5)3, Eu(NO3)3 · 6H2O, and hydropropyl-cellulose. The spectral hole was burned in the 7F05D0 transition band of the Eu3+ ions at 7 K, the depth of which was 24% of the total fluorescence intensity and decreased as the heat-treatment temperature of film increased. It was found that the hole was thermally filled and erased above ∼170 K; the temperature at which the hole was erased was lower for the film heated at high temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Castro, G., Haarer, D., Macfarlane, R.M., and Trommsdorff, H.P., U.S. Patent No. 4 101 976 (July 1978).Google Scholar
2.Jaaniso, R. and Bill, H., Europhys. Lett. 16, 569 (1991).CrossRefGoogle Scholar
3.Zhang, J., Huang, S., and Yu, J., Chinese J. Lumin. 12, 181 (1991).Google Scholar
4.Holloday, K., Wei, C., Croci, M., and Wild, Urs. P., J. Lumin. 53, 227 (1992).CrossRefGoogle Scholar
5.Zhang, J., Huang, S., and Yu, J., Opt. Lett. 17, 149 (1992).Google Scholar
6.Jaaniso, R. and Bill, H., Europhys. Lett. 16, 549 (1991).CrossRefGoogle Scholar
7.Izumitani, T. and Payne, S.A., J. Lumin. 54, 337 (1993).CrossRefGoogle Scholar
8.Kurita, A. and Kushida, T., Opt. Lett. 19, 314 (1994).CrossRefGoogle Scholar
9.Hirao, K., Todoroki, S., Cho, D.H., and Soga, N., Opt. Lett. 18, 1586 (1993).CrossRefGoogle Scholar
10.Fujita, K., Tanaka, K., Hirao, K., and Soga, N., J. Appl. Phys. 82, 5114 (1997).CrossRefGoogle Scholar
11.Fujita, K., Tanaka, K., Hirao, K., and Soga, N., Opt. Lett. 23, 543 (1998).CrossRefGoogle Scholar
12.Nogami, M., Abe, Y., Hirao, K., and Cho, D.H., Appl. Phys. Lett. 66, 2952 (1995).CrossRefGoogle Scholar
13.Nogami, M. and Abe, Y., Appl. Phys. Lett. 71, 3465 (1997).CrossRefGoogle Scholar
14.Ishihara, T., Tanaka, K., Hirao, K., and Soga, N., J. Ceram. Soc. Jpn. 105, 519 (1997).CrossRefGoogle Scholar
15.Futagami, T., Kamei, M., Yasui, I., Sugimoto, N., Hayashi, Y., and Hayashi, A., J. Ceram. Soc. Jpn. 107, 707 (1999).CrossRefGoogle Scholar
16.Thomas, I.M., in Sol-gel Optics: Processing and Applications, edited by Klein, L.C. (Kluwer Academic, Norwell, MA, 1994), chap. 6, p. 141.CrossRefGoogle Scholar
17.Nogami, M. and Hayakawa, T., Phys. Rev. B56, R14235 (1997).CrossRefGoogle Scholar
18.Nogami, M., Umehara, N., and Hayakawa, T., Phys. Rev. B58, 6166 (1997).Google Scholar
19.Jiahua, Z., Shihua, H., and Jiaqi, Y., Opt. Lett. 17, 1146 (1992).Google Scholar
20.Yugami, H., Yagi, R., Matsuo, S., and Ishigame, M., Phys. Rev. B53, 8283 (1996).CrossRefGoogle Scholar