Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T05:09:38.123Z Has data issue: false hasContentIssue false

Sol-gel synthesis and characterization of Ag nanoparticles in ZrO2 thin films

Published online by Cambridge University Press:  31 January 2011

Moriaki Wakaki*
Affiliation:
Department of Optical and Imaging Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
*
a) Address all correspondence to this author. e-mail: wakaki@keyaki.cc.u-tokai.ac.jp
Get access

Abstract

ZrO2 thin films containing silver nanoparticles were prepared using the sol-gel method with Ag to Zr molar ratios [Ag]/[Zr] = 0.11, 0.25, 0.43, 0.67, 1.00, 1.50, and 2.33. After dip coating on glass substrate, coated films were annealed at 200 and 300 °C in air. X-ray diffraction peaks corresponding to crystalline Ag were observed, but a specific peak corresponding to ZrO2 was not observed. At the molar ratio [Ag]/[Zr] = 0.25, the particle size of Ag distributed broadly centered at 17 nm for an annealing temperature of 200 °C and at 25 nm for 300 °C. The films annealed in air at 200 °C showed an absorption band centered at 450 nm because of the silver surface plasmon resonance, whereas films heated at 300 °C in air caused a red shift of the absorption to 500 nm. The absorption peak was analyzed using the effective dielectric function of Ag-ZrO2 composite films modeled with the Maxwell-Garnett expression.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Drexler, K.E.: Machine-phase nanotechnology. Sci. Am. 285, 74 (2001).CrossRefGoogle ScholarPubMed
2Spurgeon, D.: Canada unveils plans to build nanotechnology centre. Nature 412, 846 (2001).CrossRefGoogle Scholar
3Forrest, D.R.: Molecular nanotechnology. IEEE Instrum. Meas. Mag. 4, 11 (2001).CrossRefGoogle Scholar
4Forster, S. and Antonietti, M.: Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 10, 195 (1998).3.0.CO;2-V>CrossRefGoogle Scholar
5Moffit, M. and Eisenberg, A.: Size control of nanoparticles in semiconductor-polymer composites. 1. Control via multiplet aggregation numbers in styrene-based random ionomers. Chem. Mater. 7, 1178 (1995).CrossRefGoogle Scholar
6Ghosh, K. and Maiti, S.N.: Mechanical properties of silver-powderfilled polypropylene composites. J. Appl. Polym. Sci. 60, 323 (1996).3.0.CO;2-N>CrossRefGoogle Scholar
7Andres, R.P., Bielfeld, J.D., Henderson, J.I.,Janes, D.B.,Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., and Osifchin, R.J.: Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1960 (1996).CrossRefGoogle Scholar
8Tian, Y. and Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).CrossRefGoogle Scholar
9Subramanian, V., Wolf, E.E., and Kamat, P.V.: Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004).CrossRefGoogle ScholarPubMed
10Jeon, H.J., Yi, S.C., and Oh, S.G.: Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials 24, 4921 (2003).CrossRefGoogle ScholarPubMed
11Foss, C.A. Jr., Hornyak, G.L., Stockert, J.A., and Martin, C.R.: Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape. J. Phys. Chem. 98, 2963 (1994).CrossRefGoogle Scholar
12Mandal, S.K., Roy, R.K., and Pal, A.K.: Effect of particle shape distribution on the surface plasmon resonance of Ag–SiO2 nanocomposite thin films. J. Phys. D: Appl. Phys. 36, 261 (2003).CrossRefGoogle Scholar
13Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., and Schultz, S.: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755 (2002).CrossRefGoogle Scholar
14Mennig, M., Schmitt, M., and Schmidt, H.: Synthesis of Ag-colloids in sol-gel derived SiO2-coatings on glass. J. Sol-Gel Sci. Technol. 8, 1035 (1997).CrossRefGoogle Scholar
15Noriaki, M. and Hideo, H.: Colloid formation effects on depth profile of implanted Ag in SiO2 glass. Appl. Phys. Lett. 63, 2050 (1993).Google Scholar
16Magudapathy, P., Gangopadhyay, P., Panigrahi, B.K., Nair, K.G.M., and Dhara, S.: Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B 299, 142 (2001).CrossRefGoogle Scholar
17Tanahashi, I., Yoshida, M., Manabe, Y., and Yoshida, T.: Effects of heat treatment on Ag particle growth and optical properties in Ag/ SiO2 glass composite thin films. J. Mater. Res. 10, 362 (1995).CrossRefGoogle Scholar
18Mahltig, B., Gutmann, E., Meyer, D.C., Reibold, M., Bund, A., and H. Böttcher: Thermal preparation and stabilization of crystalline silver particles in SiO2-based coating solutions. J. Sol-Gel Sci. Technol. 49, 202 (2009).CrossRefGoogle Scholar
19MartÍnez-Castanñón, G., Martínez, J.R., Zarzosal, G. Ortega, Ruiz, F., and Sánchez-Loredo, M.G.: Optical absorption of Ag particles dispersed in a SiO2 amorphous matrix. J. Sol-Gel Sci. Technol. 36, 137 (2005).CrossRefGoogle Scholar
20Zhao, G., Kozuka, H., and Yoko, T.: Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au an Ag metal particles. Thin Solid Films 277, 147 (1996).CrossRefGoogle Scholar
21Epifani, M., Giannini, C., Tapfer, L., and Vasanelli, L.: Sol–gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films. J. Am. Ceram. Soc. 83, 2385 (2000).CrossRefGoogle Scholar
22Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).Google Scholar