Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-23T14:20:19.029Z Has data issue: false hasContentIssue false

Slow crack-growth behavior of alumina ceramics

Published online by Cambridge University Press:  31 January 2011

M. E. Ebrahimi
Affiliation:
GEMPPM, INSA-Lyon, 69621 Villeurbanne Cedex, France
J. Chevalier
Affiliation:
GEMPPM, INSA-Lyon, 69621 Villeurbanne Cedex, France
G. Fantozzi
Affiliation:
GEMPPM, INSA-Lyon, 69621 Villeurbanne Cedex, France
Get access

Extract

The fracture behavior of high-purity alumina ceramics with grain sizes ranging from 2 to 13 μm is studied by means of the double torsion method. Crack-propagation tests conducted in air, water, and silicon oil, for crack velocities from 10−7 to 10−2 m/s, show that slow crack growth is due to stress corrosion by water molecules. An increase of the grain size leads to enhanced crack resistance, which is indicated by a shift of the V–KI (crack velocity versus applied stress intensity factor) plot toward high values of KI. Moreover, the slope of the curve is apparently higher for coarse grain alumina. However, if the R-curve effect is substracted from the experimental results, a unique V–KItip (crack velocity versus stress intensity factor at the crack tip) law is obtained for all alumina ceramics, independently of the grain size. This means that the crack-growth mechanism (stress corrosion by water molecules) is the same and that the apparent change of the V–KI law with grain size is a direct effect of crack bridging.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Charles, R.J. and Hilling, W.B., in Symposium on Improvement of Mechanical Resistance of Glass (Scientific Continental Union of Glass 24, Charleroi, Belgium, 1962), pp. 511527.Google Scholar
2.Wiederhorn, S.M., J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
3.Michalske, T.A. and Freiman, S.W., J. Am. Ceram. Soc. 66, 284 (1983).CrossRefGoogle Scholar
4.Wan, K.T., Lathabais, S., and Lawn, B.R., J. Eur. Ceram. Soc. 6, 259 (1990).CrossRefGoogle Scholar
5.Lawn, B.R., J. Am. Ceram. Soc. 66, 83 (1983).CrossRefGoogle Scholar
6.Wiederhorn, S.M., in Mechanical and Thermal Properties of Ceramics (NBS, Washington, DC 1969), Vol. 303, pp. 217241.Google Scholar
7.Wiederhorn, S.M. and Boltz, L.H., J. Am. Ceram. Soc. 53, 553 (1970).Google Scholar
8.Lawn, B.R., Mater. Sci. Eng. 13, 277 (1974).CrossRefGoogle Scholar
9.Lawn, B.R., Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 1993).CrossRefGoogle Scholar
10.Michalske, T.A., Bunker, B.C., and Freiman, S.W., J. Am. Ceram. Soc. 69, 721 (1986).CrossRefGoogle Scholar
11.Chevalier, J., Fantozzi, G., Olagnon, C., J. Am. Ceram. Soc. (1999, in press).Google Scholar
12.Freiman, S.W., McKinney, K.R., and Smith, H.L., in Fracture Mechanics of Ceramics, edited by Bradt, R.C., Hasselman, D.P.H, and Lang, F.F. (Plenum Press, New York, London, 1973), Vol. 2, pp. 659676.Google Scholar
13.Knehans, R. and Steinbrech, R.W., in Science of Ceramics, edited by Vincenzini, P. (Research Institute for Ceramics Technology, Faenza, Italy, 1984), Vol. 12, pp. 613619.Google Scholar
14.Chantikul, P., Bennison, S., and Lawn, B.R., J. Am. Ceram. Soc. 73, 2419 (1990).CrossRefGoogle Scholar
15.Vekinis, G., Ashby, M.F., and Beaumont, P.W.R, Acta Metall. Mater. 38, 1151 (1990).CrossRefGoogle Scholar
16.Swanson, P., Fairbanks, C., Lawn, B.R., Mai, Y., and Hockey, B., J. Am. Ceram. Soc. 70, 279 (1987).CrossRefGoogle Scholar
17.Pezzotti, G., Sbaizero, O., Sergo, V., Muraki, N., Maruyama, K., and Nishida, T., J. Am. Ceram. Soc. 81, 187 (1998).CrossRefGoogle Scholar
18.Osaka, A., Hirosaki, A., and Yoshimura, M., J. Am. Ceram. Soc. 73, 2095 (1990).Google Scholar
19.Deuhler, F., Knehans, K., and Steinbrech, R., Fortschrittsber. Dtsch. Keram. Ges. 1, 51 (1985).Google Scholar
20.Fett, T. and Munz, D., J. Am. Ceram. Soc. 75, 958 (1992).CrossRefGoogle Scholar
21.Williams, D.P. and Evans, A.G., J. Test. Eval. 1, 264 (1973).CrossRefGoogle Scholar
22.Plekta, B.J., Fuller, E.R., and Koepke, B.G., in Fracture Mechanics Applied to Brittle Materials, Proceedings of the 11th Symposium on Fracture Mechanics Part II, edited by Freiman, S.W. (ASTM STP 678, Philadelphia, PA, 1979), pp. 1938.Google Scholar
23.Chevalier, J., Saadaoui, M., Olagnon, C., and Fantozzi, G., Ceram. Int. 22, 171 (1996).CrossRefGoogle Scholar
24.Chevalier, J., Olagnon, C., Fantozzi, G., and Calès, B., J. Am. Ceram. Soc. 78, 1889 (1995).CrossRefGoogle Scholar
25.Clarke, D.R., Annu. Rev. Mater. Sci. 17, 57 (1987).CrossRefGoogle Scholar