Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T20:45:40.579Z Has data issue: false hasContentIssue false

Size-driven domain reorientation in hydrothermally derived lead titanate nanoparticles

Published online by Cambridge University Press:  01 March 2005

Zhiyuan Ye
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2044
Elliott B. Slamovich*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2044
Alexander H. King
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2044
*
a)Address all correspondence to this author. e-mail: elliotts@ecn.purdue.edu
Get access

Abstract

High-resolution transmission electron microscopy studies of hydrothermally derived platelike lead titanate nanoparticles reveal that below a critical size of approximately 70 nm, the single ferroelectric domain polarization axis reorients from perpendicular to parallel to the plate. We suggest that during particle growth, ions in the hydrothermal processing medium compensate for the ferroelectric depolarization energy. When the processing medium is removed by washing and drying, single domain nanoparticles minimize their depolarization energy by c-axis flipping.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Anliker, M., Brugger, H.R. and Känzig, W.: The behavior of colloidal ferroelectrics III, barium titanate. Helv. Phys. Acta. 27, 99 (1954).Google Scholar
2.Känzig, W.: Space charge layer near the surface of a ferroelectric. Phys. Rev. 98, 549 (1955).CrossRefGoogle Scholar
3.Scott, J.F. and De Aranjo, C.A. Paz: Ferroelectric memories. Science 246, 1400 (1989).CrossRefGoogle ScholarPubMed
4.Scott, J.F.: Ferroelectric Memories (Springer-Verlag, Berlin, Germany, 2000).CrossRefGoogle Scholar
5.Ishikawa, K., Yoshikawa, K. and Okada, N.: Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B37, 5852 (1988).CrossRefGoogle Scholar
6.Shaikh, A.S., Vest, R.W. and Vest, G.M.: Dielectric-properties of ultrafine grained BaTiO3. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 36, 407 (1989).CrossRefGoogle ScholarPubMed
7.Uchino, K., Sadanaga, E. and Hirose, T.: Dependence of the crystal-structure on particle-size in barium-titanate. J. Am. Ceram. Soc. 72, 1555 (1989).CrossRefGoogle Scholar
8.Zhong, W.L., Jiang, B., Zhang, P.L., Ma, J.M., Cheng, H.M., Yang, Z.H. and Li, L.X.: Phase-transition in PbTiO3 ultrafine particles of different sizes. J. Phys. Condens. Matter 5, 2619 (1993).CrossRefGoogle Scholar
9.Hsiang, H.I. and Yen, F.S.: Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. J. Am. Ceram. Soc. 79, 1053 (1996).CrossRefGoogle Scholar
10.Chattopadhyay, S., Ayyub, P., Palkar, V.R. and Multani, M.: Size-induced diffuse phase-transition in nanocrystalline ferroelectric PbTiO3. Phys. Rev. B52, 13177 (1995).CrossRefGoogle Scholar
11.Frey, M.H. and Payne, D.A.: Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B54, 3158 (1996).CrossRefGoogle Scholar
12.Jiang, B., Peng, J.L., Bursill, L.A. and Zhong, W.L.: Size effects on ferroelectricity of ultrafine particles of PbTiO3. J. Appl. Phys. 87, 3462 (2000).CrossRefGoogle Scholar
13.Mills, D.L.: Surface effects in magnetic crystals near the ordering temperature. Phys. Rev. B3, 3887 (1971).CrossRefGoogle Scholar
14.Batra, I.P., Würfel, P. and Silverman, B.D.: New type of first-order phase transition in ferroelectric thin films. Phys. Rev. Lett. 30, 384 (1973).CrossRefGoogle Scholar
15.Krestschmer, R. and Binder, K.: Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys. Rev. B20, 1065 (1979).CrossRefGoogle Scholar
16.Tilley, D.R. and Zeks, B.: Landau theory of phase-transitions in thick-films. Solid State Commun. 49, 823 (1984).CrossRefGoogle Scholar
17.Zhong, W.L., Wang, Y.G., Zhang, P.L. and Qu, B.D.: Phenomenological study of the size effect on phase-transitions in ferroelectric particles. Phys. Rev. B50, 698 (1994).CrossRefGoogle Scholar
18.Zhong, W.L., Qu, B.D., Zhang, P.L. and Wang, Y.G.: Thickness dependence of the dielectric susceptibility of ferroelectric thin films. Phys. Rev. B50, 12375 (1994).CrossRefGoogle Scholar
19.Huang, H.T., Sun, C.Q., Zhang, T.S. and Hing, P.: Grain-size effect on ferroelectric PbZr x Ti1−x O3 solid solutions induced by surface bond contraction. Phys. Rev. B. 6318, 184112 (2001).CrossRefGoogle Scholar
20.Chraska, T., King, A.H. and Berndt, C.C.: On the size-dependent phase transformation in nanoparticulate zirconia. Mater Sci. Eng. A 286, 169 (2000).CrossRefGoogle Scholar
21.Roelofs, A., Schneller, I., Szot, K. and Waser, R.: Piezoresponse force microscopy of lead-titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81, 5231 (2002).CrossRefGoogle Scholar
22.Shih, W.Y., Shih, W.H. and Aksay, I.A.: Size dependence of the ferroelectric transition of small BaTiO3 particles—Effect of depolarization. Phys. Rev. B50, 15575 (1994).CrossRefGoogle Scholar
23.Li, X.P. and Shih, W.H.: Size effects in barium titanate particles and clusters. J. Am. Ceram. Soc. 80, 2844 (1997).CrossRefGoogle Scholar
24.Liu, X.H., Shih, W.Y. and Shih, W.H.: Effects of copper coating on the crystalline structure of fine barium titanate particles. J. Am. Ceram. Soc. 80, 2781 (1997).CrossRefGoogle Scholar
25.Junquera, J. and Ghosez, P.: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).CrossRefGoogle ScholarPubMed
26.Lines, M.E. and Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, U.K., 1977).Google Scholar
27.Qu, B.D., Jiang, B., Wang, Y.G., Zhang, P. and Zhong, W.L.: Size and temperature-dependence of dielectric-constant of ultrafine PbTiO3 particles. Chin. Phys. Lett. 11, 514 (1994).CrossRefGoogle Scholar
28.Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351 (1945).CrossRefGoogle Scholar