Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T06:23:02.995Z Has data issue: false hasContentIssue false

Single buffer layers of LaMnO3 or La0.7Sr0.3MnO3 for the development of Yba2Cu3O7−δ-coated conductors: A comparative study

Published online by Cambridge University Press:  31 January 2011

T. Aytug
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
M. Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
H. H. Zhai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
H. H. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
S. Sathyamurthy
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. D. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R. R. Ericson
Affiliation:
3M Company, St. Paul, Minnesota 55144
Get access

Abstract

Single, epitaxial buffer layers of insulating LaMnO3 (LMO) or conductive La0.7Sr0.3MnO3 (LSMO) have been grown by sputter deposition on biaxially textured Ni and Ni–alloy substrates. We report baseline investigations of their compatibility with the Yba2Cu3O7−δ (YBCO) coatings and demonstrate biaxially textured YBCO films grown by pulsed-laser deposition on these single-buffered tapes. Superconducting property characterizations revealed better properties for YBCO films on LMO-buffered tapes relative to those grown on LSMO layers. Self-field critical current densities (Jc) exceeding 1 × 106 A/cm2 at 77 K have been obtained for the YBCO (200 nm) films on LMO-buffer layers. These results offer prospects for the use of single, LMO-buffered metal tapes in the development of practical YBCO-coated conductors.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Kalbunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).CrossRefGoogle Scholar
2.Goyal, A., Feenstra, R., List, F.A., Paranthaman, M., Lee, D.F., Kroeger, D.M., Beach, D.B., Morell, J.S., Chirayil, T.G., Verebelyi, D.T., Cui, X., Specht, E.D., Christen, D.K., and Martin, P.M., J. Met. 19 (July 1999).Google Scholar
3.Dimos, D., Chaudari, P., Mannhart, J., and Legoues, F.K., Phys. Rev. Lett. 61, 219 (1988).Google Scholar
4.Verebelyi, D.T., Christen, D.K., Feenstra, R., Cantoni, C., Lee, D.F., Paranthaman, M., Arendt, P.N., DePaula, R.F., Groves, J.R., and Prouteau, C., App. Phys. Lett. 76, 1755 (2000).CrossRefGoogle Scholar
5.Paranthaman, M., Goyal, A., List, F.A., Specht, E.D., Lee, D.F., Martin, P.M., He, Q., Christen, D.K., Norton, D.P., Budai, J.D., and Kroeger, D.M., Physica C 275, 266 (1997).Google Scholar
6.List, F.A., Goyal, A., Paranthaman, M., Norton, D.P., Specht, E.D., Lee, D.F., and Kroeger, D.M., Physica C 302, 87 (1998).Google Scholar
7.He, Q., Christen, D.K., Feenstra, R., Norton, D.P., Paranthaman, M., Specht, E.D., Lee, D.F., Goyal, A., and Kroeger, D.M., Physica C 314, 105 (1999).CrossRefGoogle Scholar
8.Aytug, T., Kang, B.W., Cantoni, C., Specht, E.D., Paranthaman, M., Goyal, A., Verebelyi, D.T., Christen, D.K., Wu, J.Z., Ericson, R.E., Thomas, C.L., Yang, C-Y., and Babcock, S.E., J. Mater. Res. 16, 2661 (2001).CrossRefGoogle Scholar
9.Aytug, T., Paranthaman, M., Kang, B.W., Sathyamurthy, S., Goyal, A., and D.K. Christen. Appl. Phys. Lett. 79, 2205 (2001).CrossRefGoogle Scholar
10.Oda, M., Murakami, T., Enomoto, Y., and Suziki, M., Jpn. J. Appl. Phys. 26, L804 (1987).CrossRefGoogle Scholar
11.Wada, T., Adachi, S., Mihara, T., and Inaba, R., Jpn. J. Appl. Phys. 26, L706 (1987).Google Scholar