Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-30T23:57:32.696Z Has data issue: false hasContentIssue false

Silicon nitride: Enthalpy of formation of the α- and β-polymorphs and the effect of C and O impurities

Published online by Cambridge University Press:  31 January 2011

Jian-jie Liang
Affiliation:
Thermochemistry Facility, Chemistry Building, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
Letitia Topor
Affiliation:
Thermochemistry Facility, Chemistry Building, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
Alexandra Navrotsky
Affiliation:
Thermochemistry Facility, Chemistry Building, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
Mamoru Mitomo
Affiliation:
National Institute of Research in Inorganic Materials, 1–1 Namiki, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

High-temperature oxidative drop solution calorimetry was used to measure the enthalpy of formation of α− and β−Si3N4. Two different solvents, molten alkali borate (48 wt% LiBO2 · 52 wt% NaBO2) at 1043 and 1073 K and potassium vanadate (K2O · 3V2O5) at 973 K, were used, giving the same results. Pure α− and β−Si3N4 polymorphs have the same molar enthalpy of formation at 298 K of −850.9 ± 22.4 and −852.0 ± 8.7 kJ/mol, respectively. The unit cell dimensions of impure α−Si3N4 samples depend linearly on the O and C impurity contents, and so does the molar enthalpy of formation. The energetic stability of the α−Si3N4phase decreases when the sample contains O and C impurities. The experimental evidence strongly suggests that the impurities dissolve into the α−Si3N4 structure to form a (limited) isostructural solid solution series but that this solid solution series is energetically less stable than a mechanical mixture of pure (α or β) Si3N4, SiO2, and SiC. Thus, the α-phase is not stabilized by impurities and is probably always metastable.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoffman, M. J. and Petzow, G., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 3.Google Scholar
2.Jack, K. H., J. Mater. Sci. 11, 1135 (1976).CrossRefGoogle Scholar
3.Mitomo, M. and Petzow, G., MRS Bulletin 20, 19 (1995).CrossRefGoogle Scholar
4.Wang, C. M., Pan, X., Rühle, M., Riley, F. L., and Mitomo, M., J. Mater. Sci. 31, 5281 (1996).CrossRefGoogle Scholar
5.Messier, D. R. and Croft, W. J., Prep. Prop. Solid State Mater. 7, 132 (1982).Google Scholar
6.Hampshire, S., Park, H. K., Thompson, D. P., and Jack, K. H., Nature 274, 880 (1978).CrossRefGoogle Scholar
7.Jack, K. H., Progress in Nitrogen Ceramics, edited by Riley, F. L. (Martinus Niihoff Publishers, The Netherlands, 1983), pp. 4560.CrossRefGoogle Scholar
8.Matignon, C., Bull. Soc. Chim. Fr. 13, 791 (1913).Google Scholar
9.Thermodynamic Properties of Individual Substances, 4th ed., edited by Gurvih, L.V., Veyts, I.V., and Alocock, C.B. (Hemisphere, New York, 1990), Vol. 2, Parts I, II.Google Scholar
10.Rocabois, P., Chatillon, C., and Bernard, C., J. Am. Ceram. Soc. 79, 1351 (1996).CrossRefGoogle Scholar
11.Paule, R. C. and Margrave, J. L., in The Characterization of High Temperature Vapors, edited by Margrave, J.L. (John Wiley, New York, 1967).Google Scholar
12.Wood, J. L., Adams, G. P., Mukerji, J., and Margrave, J.L., Proc. Int. Conf. Chem. Thermodyn. 3rd, 2, 115 (1973).Google Scholar
13.O'Hare, P.A. G., Tomaszkiewicz, I., Bekk, C. M. II, and Seifert, H. J., J. Mater. Res. 12, 3203 (1997).CrossRefGoogle Scholar
14.Larson, A.C. and von Dreele, R. B., “GSAS: General Structure Analysis System,” Los Alamos National Laboratory, Los Alamos, NM, 1994.Google Scholar
15.Navrotsky, A., Phys. Chem. Min. 2, 89 (1977).CrossRefGoogle Scholar
16.Navrotsky, A., Rev. Mineral. 14, 225 (1985).Google Scholar
17.Navrotsky, A., Phys. Chem. Min. 24, 222 (1997).CrossRefGoogle Scholar
18.McHale, J., Kowach, G.R., Navrotsky, A., and Disalvo, F. J., Chemistry: A European Journal 2, 1514 (1996).CrossRefGoogle Scholar
19.Elder, S. H., DiSalvo, F. J., Topor, L., and Navrotsky, A., Chem. Mater. 5, 1545 (1993).CrossRefGoogle Scholar
20.McHale, J. M., Navrotsky, A., Kowach, G. R., Balbarin, V.E., and DiSalvo, F. J., Chem. Mater., in press.Google Scholar
21.Kolthoff, E., in Treatise on Analytical Chemistry (John Wiley & Sons, Inc., New York, 1963), Vol. 8, Part II, p. 193.Google Scholar
22.Bailar, J. C., Emeléus, H. J., Nyholm, R., and Trotman-Dickenson, A. F., in Comprehensive Inorganic Chemistry (Pergamon Press, New York, 1973), p. 513.Google Scholar
23.Holtzberg, F., Reisman, A., Berry, M., and Berkenblit, M., J. Am. Chem. Soc. 78, 1536 (1956).CrossRefGoogle Scholar
24.Glazyrin, M.P. and Fotiev, A. A., Russ. J. Phys. Chem. (Engl. Transl.) 42, 1288 (1968).Google Scholar
25.Gravette, N.C., Barham, D., and Barrett, L. R., Trans. Brit. Ceram. Soc. 65, 199 (1966).Google Scholar
26.Okada, K., Fukuyama, K., and Kameshima, Y., J. Am. Ceram. Soc. 78, 2021 (1995).CrossRefGoogle Scholar
27.Shaffer, P.T. B., Acta Crystallogr. B25, 477 (1969).CrossRefGoogle Scholar
28.Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
29.Navrotsky, A., Am. Mineral. 79, 589 (1994).Google Scholar
30.Navrotsky, A., Risbud, S. H., Liang, J-J., and Leppert, V. J., J. Phys. Chem. B 101, 9433 (1997).CrossRefGoogle Scholar
31.Suematsu, H., Mitomo, M., Mitchell, T. E., and Petrovic, J.J., J. Am. Ceram. Soc. 80, 615 (1997).CrossRefGoogle Scholar
32.Robie, R.A. and Hemingway, B.S., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10 5 Pascals) Pressure and High Temperatures, U.S. Geol. Survey Bull. 2131, U.S. Geological Survey, Washington, DC, 1995.Google Scholar