Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-21T22:48:24.088Z Has data issue: false hasContentIssue false

Self-affine Fracture Surface Parameters and Their Relationship with Microstructure in a Cast Aluminum Alloy

Published online by Cambridge University Press:  31 January 2011

M. Hinojosa
Affiliation:
Facultad de Ingeniería Mecánica y Ele’ctrica, Universidad Auto’noma de Nuevo León, Apartado Postal 076 Sucureal “F”, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66450, Mexico
J. Aldaco
Affiliation:
Facultad de Ingeniería Mecánica y Ele’ctrica, Universidad Auto’noma de Nuevo León, Apartado Postal 076 Sucureal “F”, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66450, Mexico
Get access

Abstract

The possible role of microstructural features in determining the self-affinity of the fracture surface of a cast aluminum alloy is explored in this work. Fracture surfaces generated both in tension and impact tests were topometrically analyzed by atomic force microscopy, scanning electron microscopy, and stylus profilometry. The roughness exponent exhibited the “universal” value ζ ≈ 0.78, and the correlation length ζ was of the order of the grain size. The brittle intermetallic compounds known to be important in crack initiation did not show any correlation with the self-affine parameters of the resulting fracture surfaces in this particular case.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mandelbrot, B.B., Passoja, D.E., and Paullay, A.J., Nature 308, 19 (1984).Google Scholar
2.Bouchaud, E., J. Phys.: Condens. Matter 9, 4319 (1997).Google Scholar
3.Balankin, S., Engineering Fracture Mechanics 57, 135 (1997).Google Scholar
4.Feder, J., Fractals (Plenum Press, New York, 1988).CrossRefGoogle Scholar
5.Bouchaud, E., Lappaset, G., and Planès, J., Europhys. Lett. 13, 73 (1990).Google Scholar
6.Daguier, P., Henaux, S., Bouchaud, E., and Creuzet, F., Phys. Rev. E. 53, 5637 (1996).CrossRefGoogle Scholar
7.Narayan, O. and Fisher, D., Phys. Rev. Lett. 68, 3615 (1992).CrossRefGoogle Scholar
8.Halpin-Healy, T. and Zhang, Yi-Cheng, Physics Report 254, 215 (1995).Google Scholar
9.Ertas, D. and Kardar, M., Phys. Rev. Lett. 69, 929 (1992).Google Scholar
10.Ertas, D. and Kardar, M., Phys. Rev. E 48, 1228 (1993).Google Scholar
11.Ertas, D. and Kardar, M., Phys. Rev. Lett. E 48, 1228 (1993).Google Scholar
12.Ertas, D. and Kardar, M., Phys. Rev. E 53, 3520 (1996).Google Scholar
13.Bouchaud, J.P., Bouchaud, E., Lapasset, G., and Planès, J., Phys. Rev. Lett. 71, 2240 (1993).CrossRefGoogle Scholar
14.Bouchaud, E., Bouchaud, J-P., Planès, J., and Lapasset, G., Fractals 1, 1051 (1993).Google Scholar
15.Schmittbuhl, J., Roux, S., Vilotte, J.P., and Majoy, K.J., Phys. Rev. Lett. 74, 1787 (1995).CrossRefGoogle Scholar
16.Hinojosa, M., Bouchaud, E., and Nghiem, B., in Fracture and Ductile vs. Brittle Behavior—Theory, Modeling and Experiment, edited by Beltz, G.E., Blumberg, R.L., Selinger, , Kim, K.S., and Marder, M.P. (Mater. Res. Soc. Symp. Proc. 539, Pittsburgh, PA, 1999), pp. 203708.Google Scholar
17.Backerud, L., Chai, G., and Tamminem, J., Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys (AFS/ Skanaluminium, Des Plaines, IL, 1990).Google Scholar
18. Aluminum Casting Technology (American Foundrymen Society, Des Plaines, IL, 1993).Google Scholar
19. Metallography and Microstructures, ASM Handbook Vol. 9 (ASM International, Metals Park, OH, 1985), pp. 351388.Google Scholar
20. ASTM Standard E 112, Annual Book of ASTM Standards, 03.01 (ASTM International, Pittsburgh, PA, 1997).Google Scholar
21. ASTM Standard E 1382, Annual Book of ASTM Standards, 03.01 (ASTM International, Pittsburgh, PA, 1997).Google Scholar
22. ASTM Standard E-23, Annual Book of ASTM Standards, 03.01 (ASTM International, Pittsburgh, PA, 1997).Google Scholar
23. ASTM Standard A-370, Annual Book of ASTM Standards, 03.01 (ASTM International, Pittsburgh, PA, 1997).Google Scholar
24.Schmittbuhl, J., Vilotte, J.P., and Roux, S., Phys. Rev. E. 51, 131 (1995).Google Scholar
25.Bouchaud, E., Lappasset, G., Planes, J., and Naveos, S., Phys. Rev. B 48, 2917 (1993).Google Scholar
26.Kulawansa, D.M., Jensen, L.C., Langford, S.C., and Dickinson, J.T., J. Mater. Res. 9, 476 (1994).CrossRefGoogle Scholar
27.Daguier, P., Nghiem, B., Bouchaud, E., and Creuzet, F., Phys. Rev. Lett 78, 1062 (1994).Google Scholar
28.Maloy, K.J., Hansen, A., Hinrichsen, E.L., and Roux, S., Phys. Rev. Lett. 68, 213 (1992).CrossRefGoogle Scholar
29.Hinojosa, M., Reyes, E., Guerrero, C. and Ortiz, U., in Multiscale Modeling of Materials—2000, edited by Kubin, L.P., Selinger, R.L., Bassani, J.L., and Ch., K.Mat. Res. Soc. Symp. Proc. 653, Warrendale, PA, 2001), p. Z7.7.Google Scholar
30.Engoy, T., Maloy, K.J., Hansen, A., and Roux, S., Phys. Rev. Lett. 73, 834 (1994).CrossRefGoogle Scholar