Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T14:13:08.078Z Has data issue: false hasContentIssue false

Role of Yttria-stabilized Zirconia Produced by Ion-beam-assisted Deposition on the Properties of RuO2 on SiO2/Si

Published online by Cambridge University Press:  31 January 2011

Q. X. Jia
Affiliation:
Materials Science and Technology Division, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. Arendt
Affiliation:
Materials Science and Technology Division, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. R. Groves
Affiliation:
Materials Science and Technology Division, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Y. Fan
Affiliation:
Materials Science and Technology Division, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. M. Roper
Affiliation:
Materials Science and Technology Division, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. R. Foltyn
Affiliation:
Materials Science and Technology Division, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Highly conductive biaxially textured RuO2 thin films were deposited on technically important SiO2/Si substrates by pulsed laser deposition, where yttria-stabilized zirconia (YSZ) produced by ion-beam-assisted-deposition (IBAD) was used as a template to enhance the biaxial texture of RuO2 on SiO2/Si. The biaxially oriented RuO2 had a room-temperature resistivity of 37 μΔ-cm and residual resistivity ratio above 2. We then deposited Ba0.5Sr0.5TiO3 thin films on RuO2/IBAD-YSZ/SiO2/Si. The Ba0.5Sr0.5TiO3 had a pure (111) orientation normal to the substrate surface and a dielectric constant above 360 at 100 kHz.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bernstein, S. D., Wong, T. Y., Kisler, Y., and Tustison, R. W., J. Mater. Res. 8, 12 (1993).CrossRefGoogle Scholar
2.Jia, Q. X., Chang, L. H., and Anderson, W. A., J. Mater. Res. 9, 2561 (1994).CrossRefGoogle Scholar
3.Yoo, I. K. and Desu, S. B., Phys. Status Solidi A 133, 565 (1992).CrossRefGoogle Scholar
4.Al-Shareef, H. N., Bellur, K. R., Kingon, A. I., and Auciello, O., Appl. Phys. Lett. 66, 239 (1995).CrossRefGoogle Scholar
5.Takemura, K., Sakuma, T., and Miyasaka, Y., Appl. Phys. Lett. 64, 2967 (1994).CrossRefGoogle Scholar
6.Yoshikawa, K., Kimura, T., Noshiro, H., Otani, S., Yamada, M., and Furumura, Y., Jpn. J. Appl. Phys. 33, L867 (1994).CrossRefGoogle Scholar
7.Kolawa, E., So, F. C. T., Pan, E. T.-S., and Nicolet, M-A., Appl. Phys. Lett. 50, 854 (1987).CrossRefGoogle Scholar
8.Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., Appl. Phys. Lett. 50, 1879 (1987).CrossRefGoogle Scholar
9.Al-Shareef, H. N., Bellur, K. R., Kingon, A. I., and Auciello, O., Appl. Phys. Lett. 66, 239 (1995).CrossRefGoogle Scholar
10.Jia, Q. X., Wu, X. D., Foltyn, S.R., Findikoglu, A. T., Tiwari, P., Zheng, J. P., and Jow, T. R., Appl. Phys. Lett. 67, 1677 (1995).CrossRefGoogle Scholar
11.Jia, Q. X., Song, S. G., Wu, X. D., and Foltyn, S. R., J. Mater. Res. 10, 2401 (1995).CrossRefGoogle Scholar
12.Jia, Q. X., Song, S. G., Cho, J. H., Wu, X. D., Foltyn, S.R., Findikoglu, A. T., and Smith, J. L., Appl. Phys. Lett. 68, 1069 (1996).CrossRefGoogle Scholar
13.Wang, Q., Gilmer, D., Fan, Y., Franciosi, A., Evans, D. F., Gladfelter, W. L., and Zhang, X. F., J. Mater. Res. 12, 984 (1997).CrossRefGoogle Scholar
14.Ramesh, R., Lee, J., Sands, T., Keramidas, V. G., and Auciello, O., Appl. Phys. Lett. 64, 2511 (1994).CrossRefGoogle Scholar
15.Yamauchi, S. and Yoshimaru, M., Integrated Ferroelectrics 14, 159 (1997).CrossRefGoogle Scholar
16.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
17.Wu, X. D., Foltyn, S. R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
18.Arendt, P. N., Foltyn, S. R., Wu, X. D., Townsend, J., Adams, C., Hawley, M., Tiwari, P., Maley, M., Willis, J., Moseley, D., and Coulter, Y., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 209.CrossRefGoogle Scholar
19.Arendt, P. N., Foltyn, S. R., Groves, J. R., DePaula, R. F., Dowden, P. C., Roper, J. M., and Coulter, J. Y., Adv. Cryog. Eng. (in press).Google Scholar
20.Jia, Q. X., Wu, X. D., Zhou, D. S., Foltyn, S. R., Tiwari, P., Peterson, D. E., and Mitchell, T. E., Philos. Mag. Lett. 72, 385 (1995).CrossRefGoogle Scholar
21.Ryden, W. D., Lawson, A. W., and Sartain, C. C., Phys. Rev. B 1, 1494 (1970).CrossRefGoogle Scholar
22.Mar, S. Y., Liang, J. S., Sun, C. Y., and Huang, Y. S., Thin Solid Films 238, 158 (1994).CrossRefGoogle Scholar
23.Kim, T. S., Kim, C. H., and Oh, M. H., J. Appl. Phys. 75, 7998 (1994).CrossRefGoogle Scholar
24.Yoon, S. G., Lee, J. C., and Safari, A., J. Appl. Phys. 76, 2999 (1994).CrossRefGoogle Scholar
25.Jia, Q. X., Wu, X. D., Foltyn, S. R., and Tiwari, P., Appl. Phys. Lett. 66, 2197 (1995).CrossRefGoogle Scholar
26.Hou, S. Y., Kwo, J., Watts, R. K., Cheng, J. Y., and Fork, D. K., Appl. Phys. Lett. 67, 1387 (1995).CrossRefGoogle Scholar
27.Takemura, K., Yamamichi, S., Lesaicherre, P. Y., Tokashiki, K., Miyamoto, H., Ono, H., Miyasaka, Y., and Yoshida, M., Jpn. J. Appl. Phys. 34, 5224 (1995).CrossRefGoogle Scholar
28.Ichinose, N. and Ogiwara, T., Jpn. J. Appl. Phys. 32, 4115 (1993).CrossRefGoogle Scholar