Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T17:29:14.895Z Has data issue: false hasContentIssue false

Role of Sr Addition on the Structure Stability and Electrical Conductivity of Sr-Doped Lanthanum Copper Oxide Perovskites

Published online by Cambridge University Press:  03 March 2011

Ho-Chieh Yu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
Kuan-Zong Fung*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: kzfung@mail.ncku.edu.tw
Get access

Abstract

The structural and electrical properties of lanthanum copper oxide were examined as a function of Sr addition. It was observed that the lanthanum oxide and copper oxide formed La2CuO4 with K2NiF4 structure when the powder mixture was heated at 800 °C in ambient pressure. Interestingly, the samples of Sr-doped (15∼25%) lanthanum copper oxides showed single perovskite-based phase after being heated at 800 °C. Without Sr addition, a single-perovskite phase of lanthanum copper oxide was observed only under the oxygen pressure as high as 65 kbar. The stabilization of perovskite structure in lanthanum copper oxide was effectively achieved by the addition of Sr. Based on the titration analysis and pertinent defect reactions, the enhancement of perovskite stability was due to the presence of trivalent copper ions that were created to balance the electrical charge of doping ion (SrLa′). With the increasing concentration of trivalent copper ions (or electron holes equivalently) in Sr-doped samples, lanthanum copper oxide also changed from a semiconductor to metallic conductor. When the Sr dopant exceeded its solubility limit of approximately 25% in the A-site sublattice, the Sr-rich second phases, La2SrCu2O6 and Cu2SrO3, appeared and suppressed the electronic conduction drastically.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nguyen, N., Choisnet, J., Hervieu, M., and Raveau, B., J. Solid State Chem. 39, 120 (1981).CrossRefGoogle Scholar
2Fleming, R.M., Batlogg, B., Cava, R.J. and Rietman, E.A., Phys. Rev. B 35, 7191 (1987).CrossRefGoogle Scholar
3Cava, R.J., van Dover, R.B., Batlogg, B. and Rietman, E.A., Phys. Rev. Lett., 58, 408 (1987).CrossRefGoogle Scholar
4Demazeau, G., Parent, C., Pouchard, M. and Hagenmuller, P., Mat. Res. Bull. 7, 913 (1972).CrossRefGoogle Scholar
5Bringley, J.F., Scott, B.A., Placa, S.J., Boehme, R.F., Shaw, T.M., McElfresh, M.W., Trail, S.S., Cox, D.E.. Nature 347, 263 (1990).CrossRefGoogle Scholar
6Webb, A.W., Kim, K.H. and Bouldin, C., Solid State Commun. 79, 507 (1991).CrossRefGoogle Scholar
7Bringley, J.F., Scott, B.A., Placa, S.J., McGuire, T.M. and Mehran, F., Phys. Rev. B 47, 15269 (1993).CrossRefGoogle Scholar
8Darracq, S., Matar, S. and Demazeau, G., Solid State Commun. 85, 961 (1993).CrossRefGoogle Scholar
9Laplaca, S.J., Bringley, J.F., Scott, B.A. and Cox, D.E., ActaCrystallogr. Sect. C 49, 1415 (1993).CrossRefGoogle Scholar
10Poeppelmeier, K.R., Leonowicz, M.E., Scanlon, J.C., andJ.M. Longo, J. Solid State Chem. 45, 71 (1982).CrossRefGoogle Scholar
11Michel, C., Er-Rakho, L. and Raveau, B., Mater. Res. Bull. 20, 667 (1987).CrossRefGoogle Scholar
12Petrov, A.N., Kononchuk, O.F., Andreev, A.V., Cherepanov, V.A. and Kofstad, P., Solid States Ionics 80, 189 (1995).CrossRefGoogle Scholar
13Er-Rakho, L., Michel, C., Provost, J. and Raveau, B., J. Solid State Chem. 37, 151 (1981).CrossRefGoogle Scholar
14Remmel, J., Geerk, J., Linker, G., Meyer, O., Smithey, R., Strehlau, B. and Xiong, G.C., Physica C, 165, 212 (1990).CrossRefGoogle Scholar
15Siegrist, T., Zahurac, S.M., Murphy, D.W. and Roth, R.S., Nature 334, 231 (1988).CrossRefGoogle Scholar
16DeLeeuw, D.M., Mutsaers, C.A.H.A., Geelen, G.P.J., and Langereis, C., J. Solid State Chem. 80, 276 (1989).CrossRefGoogle Scholar
17Murayama, N., Sakagugchi, S., Wakai, F., Sudo, E., Tsuzuki, A. and Torii, Y., Jpn. J. Appl. Phys. 27, L55 (1988).CrossRefGoogle Scholar
18Yu, H.C. and Fung, K.Z., Mater. Res. Bull. 38, 231 (2003).CrossRefGoogle Scholar
19Maeno, Y., Teraoka, H., Matsukuma, K., Yoshida, K., Sugiyama, K., Nakamura, F. and Fujita, T., Physica C 185-189, 587 (1991).CrossRefGoogle Scholar
20Hiroi, Z., J. Solid State Chem. 123, 223 (1996).CrossRefGoogle Scholar
21Nazzal, A.I., Lee, V.Y., Engler, E.M., Jacowitz, R.D., Tokura, Y. and Torrance, J.B., Physica C 153-155, 1367 (1988).CrossRefGoogle Scholar
22Otzschi, K., Koga, K. and Ueda, Y., J. Solid State Chem. 115, 490 (1995).CrossRefGoogle Scholar
23Takagei, H., Ido, T., Ishibashi, S., Uota, M. and Uchida, S., Phys. Rev. B 40, 2254 (1989).CrossRefGoogle Scholar
24Otzschi, K. and Ueda, Y., J. Solid State Chem. 107, 149 (1993).CrossRefGoogle Scholar
25Torrance, J.B., Lacorre, P., Nazzal, A.I., Ansaldo, E.J., andCh. Niedermayer, Phys. Rev. B 46, 6382 (1992).Google Scholar
26Hiroi, Z. and Takano, M., Nature 377, 41 (1995).CrossRefGoogle Scholar
27Darracq, S., Kang, S.G., Choy, J.H., and Demazeau, G., J. Solid State Chem. 114, 88 (1995).CrossRefGoogle Scholar
28Kostogloudis, G. Ch. and Ftilos, Ch., Solid State Ionics 109, 43 (1998).CrossRefGoogle Scholar