Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T02:54:47.766Z Has data issue: false hasContentIssue false

The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis

Published online by Cambridge University Press:  03 July 2017

Swapna Challagulla
Affiliation:
Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad-500078, India
Sounak Roy*
Affiliation:
Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad-500078, India
*
a) Address all correspondence to this author. e-mail: sounak.roy@hyderabad.bits-pilani.ac.in
Get access

Abstract

Recently, solution combustion synthetic approach has emerged as a potential route to synthesize a wide range of catalytic oxides. Nano TiO2 was synthesized by solution combustion methods using glycine, urea, and oxalyldihydrazide as fuels. X-ray diffraction and field emission scanning electron microscopy analyses revealed the structural and morphological differences of TiO2 synthesized with different fuels. The oxidizer to fuel ratio from lean to rich conditions also played a crucial role in determining the polymorphic percentage concentration in the synthesized TiO2 powders. However, diffuse reflectance spectroscopy and photoluminescence spectroscopy studies did not show any significant differences in the electronic properties of the synthesized TiO2. As the polymorphic composite phases synergistically influence the catalytic performances, photodegradation of methylene blue (MB) and photo hydrogen production were studied with the synthesized catalysts. The synergistic role crucially depended on the specific reaction. The presence of different TiO2 polymorphs due to difference in fuels during combustion controlled the photocatalytic efficiency of the catalysts toward MB degradation and hydrogen production.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Scott T. Misture

References

REFERENCES

Berger, D., Matei, C., Papa, F., Macovei, D., Fruth, V., and Deloume, J.: Pure and doped lanthanum manganites obtained by combustion method. J. Eur. Ceram. Soc. 27, 43954398 (2007).CrossRefGoogle Scholar
Patil, K.C., Aruna, S.T., and Ekambaram, S.: Combustion synthesis. Curr. Opin. Solid State Mater. Sci. 2, 158165 (1997).CrossRefGoogle Scholar
Moore, J.J. and Feng, H.J.: Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog. Mater. Sci. 39, 243273 (1995).Google Scholar
Barbato, P.S., Colussi, S., Di Benedetto, A., Landi, G., Lisi, L., Llorca, J., and Trovarelli, A.: Origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction. J. Phys. Chem. C 120, 1303913048 (2016).Google Scholar
Bera, P., Patil, K.C., Jayaram, V., Subbanna, G., and Hegde, M.S.: Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal–ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. J. Catal. 196, 293301 (2000).Google Scholar
Bera, P., Patil, K.C., and Hegde, M.S.: Oxidation of CH4 and C3H8 over combustion synthesized nanosize metal particles supported on α-Al2O3 . Phys. Chem. Chem. Phys. 2, 373378 (2000).Google Scholar
Fumo, D.A., Jurado, J., Segadães, A.M., and Frade, J.R.: Combustion synthesis of iron-substituted strontium titanate perovskites. Mater. Res. Bull. 32, 14591470 (1997).Google Scholar
Sousa, V., Segadaes, A., Morelli, M., and Kiminami, R.: Combustion synthesized ZnO powders for varistor ceramics. Int. J. Inorg. Mater. 1, 235241 (1999).Google Scholar
Bhaduri, S., Zhou, E., and Bhaduri, S.: Auto ignition processing of nanocrystalline α-Al2O3 . Nanostruct. Mater. 7, 487496 (1996).Google Scholar
Avgouropoulos, G. and Ioannides, T.: Selective CO oxidation over CuO–CeO2 catalysts prepared via the urea–nitrate combustion method. Appl. Catal., A 244, 155167 (2003).Google Scholar
Ghosh, S.K., Pal, S., Roy, S.K., Pal, S.K., and Basu, D.: Modelling of flame temperature of solution combustion synthesis of nanocrystalline calcium hydroxyapatite material and its parametric optimization. Bull. Mater. Sci. 33, 339350 (2010).CrossRefGoogle Scholar
da Conceição, L., Ribeiro, N.F.P., Furtado, J.G.M., and Souza, M.M.V.M.: Effect of propellant on the combustion synthesized Sr-doped LaMnO3 powders. Ceram. Interfaces 35, 16831687 (2009).CrossRefGoogle Scholar
Wu, L., Jimmy, C.Y., Zhang, L., Wang, X., and Li, S.: Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem. 177, 36663674 (2004).Google Scholar
Ma, X., Xue, L., Li, X., Yang, M., and Yan, Y.: Controlling the crystalline phase of TiO2 powders obtained by the solution combustion method and their photocatalysis activity. Ceram. Interfaces 41, 1192711935 (2015).CrossRefGoogle Scholar
Roy, S., Hegde, M.S., Ravishankar, N., and Madras, G.: Creation of redox adsorption sites by Pd2+ ion substitution in nanoTiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition. J. Phys. Chem. C 111, 81538160 (2007).Google Scholar
Roy, S., Marimuthu, A., Hegde, M.S., and Madras, G.: High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99 . Appl. Catal., B 73, 300310 (2007).Google Scholar
Roy, S., Viswanath, B., Hegde, M.S., and Madras, G.: Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2−δ (M = Cr, Mn, Fe, Co, Cu). J. Phys. Chem. C 112, 60026012 (2008).Google Scholar
Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 1449314586 (2016).CrossRefGoogle ScholarPubMed
Eswar, N.K., Ramamurthy, P.C., and Madras, G.: High photoconductive combustion synthesized TiO2 derived nanobelts for photocatalytic water purification under solar irradiation. New J. Chem. 39, 60406051 (2015).Google Scholar
Chung, S-L. and Wang, C-M.: A sol–gel combustion synthesis method for TiO2 powders with enhanced photocatalytic activity. J. Sol-Gel Sci. Technol. 57, 7685 (2011).Google Scholar
Chung, S-L. and Wang, C-M.: Solution combustion synthesis of TiO2 and its use for fabrication of photoelectrode for dye-sensitized solar cell. J. Mater. Sci. Technol. 28, 713722 (2012).Google Scholar
Daya Mani, A., Laporte, V., Ghosal, P., and Subrahmanyam, C.: Combustion synthesized TiO2 for enhanced photocatalytic activity under the direct sunlight-optimization of titanylnitrate synthesis. Mater. Res. Bull. 47, 24152421 (2012).CrossRefGoogle Scholar
Kitamura, Y., Okinaka, N., Shibayama, T., Mahaney, O.O.P., Kusano, D., Ohtani, B., and Akiyama, T.: Combustion synthesis of TiO2 nanoparticles as photocatalyst. Powder Technol. 176, 9398 (2007).CrossRefGoogle Scholar
Jongprateep, O., Puranasamriddhi, R., and Palomas, J.: Nanoparticulate titanium dioxide synthesized by sol–gel and solution combustion techniques. Ceram. Interfaces 41(Suppl. 1), S169S173 (2015).CrossRefGoogle Scholar
Rasouli, S., Oshani, F., and Hashemi, S.: Effect of various fuels on structure and photo-catalytic activity of nanocrystalline TiO2 prepared by microwave-assisted combustion method. Prog. Color, Color. Coat. 4, 8594 (2011).Google Scholar
Sivalingam, G., Nagaveni, K., Hegde, M.S., and Madras, G.: Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2 . Appl. Catal., B 45, 2338 (2003).Google Scholar
Vinu, R., Akki, S.U., and Madras, G.: Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2 . J. Hazard. Mater. 176, 765773 (2010).Google Scholar
Vinu, R. and Madras, G.: Photocatalytic activity of Ag-substituted and impregnated nano-TiO2 . Appl. Catal., A 366, 130140 (2009).CrossRefGoogle Scholar
Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., and Parkin, I.P.: Band alignment of rutile and anatase TiO2 . Nat. Mater. 12, 798801 (2013).CrossRefGoogle ScholarPubMed
Kavan, L., Grätzel, M., Gilbert, S.E., Klemenz, C., and Scheel, H.J.: Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 67166723 (1996).CrossRefGoogle Scholar
Deák, P., Aradi, B., and Frauenheim, T.: Band lineup and charge carrier separation in mixed rutile-anatase systems. J. Phys. Chem. C 115, 34433446 (2011).Google Scholar
Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., and Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 45454549 (2003).Google Scholar
Su, R., Bechstein, R., , L., Vang, R.T., Sillassen, M., Esbjörnsson, B.R., Palmqvist, A., and Besenbacher, F.: How the anatase-to-rutile ratio influences the photoreactivity of TiO2 . J. Phys. Chem. C 115, 2428724292 (2011).Google Scholar
Nagarjuna, R., Roy, S., and Ganesan, R.: Polymerizable sol–gel precursor mediated synthesis of TiO2 supported zeolite-4A and its photodegradation of methylene blue. Microporous Mesoporous Mater. 211, 18 (2015).Google Scholar
Guo, H., Li, D., Jiang, D., Li, W., and Sun, Y.: The one-step oxidation of methanol to dimethoxymethane over nanostructure vanadium-based catalysts. Catal. Lett. 135, 4856 (2010).Google Scholar
Sclafani, A., Palmisano, L., and Schiavello, M.: Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J. Phys. Chem. 94, 829832 (1990).Google Scholar
Debnath, R. and Chaudhuri, J.: Inhibiting effect of AlPO4 and SiO2 on the anatase → rutile transformation reaction: An X-ray and laser Raman study. J. Mater. Res. 7, 33483351 (1992).Google Scholar
Hubbard, C.R., Evans, E., and Smith, D.: The reference intensity ratio, I/I c, for computer simulated powder patterns. J. Appl. Crystallogr. 9, 169174 (1976).Google Scholar
Liu, L., Gu, X., Ji, Z., Zou, W., Tang, C., Gao, F., and Dong, L.: Anion-assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions. J. Phys. Chem. C 117, 1857818587 (2013).CrossRefGoogle Scholar
Liu, L., Zhao, H., Andino, J.M., and Li, Y.: Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 18171828 (2012).Google Scholar
Hu, J., Cao, Y., Wang, K., and Jia, D.: Green solid-state synthesis and photocatalytic hydrogen production activity of anatase TiO2 nanoplates with super heat-stability. RSC Adv. 7, 1182711833 (2017).Google Scholar
Li, L., Yu, L., Lin, Z., and Yang, G.: Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts. ACS Appl. Mater. Interfaces 8, 85368545 (2016).Google Scholar
Chiarello, G.L., Selli, E., and Forni, L.: Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2 . Appl. Catal., B 84, 332339 (2008).Google Scholar
Kawai, T. and Sakata, T.: Photocatalytic hydrogen production from liquid methanol and water. J. Chem. Soc., Chem. Commun. 15, 694695 (1980).Google Scholar
Al-Johani, M.S., Al-Zaghayer, Y.S., and Al-Mayman, S.I.: TiO2/ZnO photocatalytic activity for hydrogen production. Int. Sci. J Environ. Sci. 4, 18 (2015).Google Scholar
Waterhouse, G., Wahab, A., Al-Oufi, M., Jovic, V., Anjum, D.H., Sun-Waterhouse, D., Llorca, J., and Idriss, H.: Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2 . Sci. Rep. 3, 2849 (2013).CrossRefGoogle ScholarPubMed
Zhang, J., Xu, Q., Feng, Z., Li, M., and Li, C.: Importance of the relationship between surface phases and photocatalytic activity of TiO2 . Angew. Chem., Int. Ed. 47, 17661769 (2008).CrossRefGoogle ScholarPubMed
Priebe, J.B., Radnik, J., Lennox, A.J., Pohl, M-M., Karnahl, M., Hollmann, D., Grabow, K., Bentrup, U., Junge, H., and Beller, M.: Solar hydrogen production by plasmonic Au–TiO2 catalysts: Impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal. 5, 21372148 (2015).Google Scholar
Melvin, A.A., Illath, K., Das, T., Raja, T., Bhattacharyya, S., and Gopinath, C.S.: M–Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces. Nanoscale 7, 1347713488 (2015).Google Scholar
Sun, T., Fan, J., Liu, E., Liu, L., Wang, Y., Dai, H., Yang, Y., Hou, W., Hu, X., and Jiang, Z.: Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol. 228, 210218 (2012).Google Scholar