Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T01:58:11.003Z Has data issue: false hasContentIssue false

Role of bonding and coordination in the atomic structure and energy of diamond and silicon grain boundaries

Published online by Cambridge University Press:  31 January 2011

P. Keblinski
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, and Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. R. Phillpot
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
H. Gleiter
Affiliation:
Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany
Get access

Abstract

The high-temperature equilibrated atomic structures and energies of large-unit-cell grain boundaries (GB's) in diamond and silicon are determined by means of Monte-Carlo simulations using Tersoff's potentials for the two materials. Silicon provides a relatively simple basis for understanding GB structural disorder in a purely sp3 bonded material against which the greater bond stiffness in diamond combined with its ability to change hybridization in a defected environment from sp3 to sp2 can be elucidated. We find that due to the purely sp3-type bonding in Si, even in highly disordered, high-energy GB's at least 80% of the atoms are fourfold coordinated in a rather dense confined amorphous structure. By contrast, in diamond even relatively small bond distortions exact a considerable price in energy that favors a change to sp2-type local bonding; these competing effects translate into considerably more ordered diamond GB's; however, at the price of as many as 80% of the atoms being only threefold coordinated. Structural disorder in the Si GB's is therefore partially replaced by coordination disorder in the diamond GB's. In spite of these large fractions of three-coordinated GB carbon atoms, however, the three-coordinated atoms are rather poorly connected amongst themselves, thus likely preventing any type of graphite-like electrical conduction through the GB's.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gruen, D. M., Liu, S., Krauss, A. R., and Pan, X., J. Appl. Phys. 75, 1758 (1994); D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, Appl. Phys. Lett. 64, 1502 (1994).CrossRefGoogle Scholar
2.Nuth, J. A., Nature (London) 329, 589 (1987); Astrophys. Space Sci. 139, 103 (1987).CrossRefGoogle Scholar
3.Hwang, N. M., Hahn, J. H., and Yoon, D. Y., J. Cryst. Growth 160, 87 (1996); N. M. Hwang and D. Y. Yoon, ibid. 160, 98 (1996).CrossRefGoogle Scholar
4.Csencsits, R., Zuiker, C. D., Gruen, D. M., and Krauss, A. R., Solid State Phen. 51–52, 261 (1996).CrossRefGoogle Scholar
5.Zuiker, C. D., Krauss, A. R., Gruen, D. M., Pan, X., Li, J. C., Csencsits, R., Erdemir, A., Bindal, C., and Fenske, G., Proc. Thin Films Symp. on the Synthesis and Characterization of Diamond and Related Materials, San Diego, April 1995.Google Scholar
6.Gruen, D. M. (private communication).Google Scholar
7.Gruen, D. M., Krauss, A. R., Zhou, D., McCauley, T. G., Corrigan, T. D., Chang, R. P. H., and Swain, G. M., Proc. Int. Symp. on Chemical Vapor Deposition, Paris, France, Aug. 31–Sep. 5, 1997 (submitted).Google Scholar
8.Gruen, D. M., Krauss, A. R., and Auciello, O. (private communication).Google Scholar
9. See, for example, papers in Polycrystalline Semiconductors, edited by Mller, H-J., Strunk, H. P., and Werner, J. H., Springer Proceedings in Physics, Vol. 35 (Springer, Berlin, 1989); Polycrystalline Semiconductors II, edited by J. H. Werner and H. P. Strunk, Springer Proceedings in Physics, Vol. 54 (Springer, Berlin, 1991).Google Scholar
10.Hornstra, J., Physica 25, 409 (1959); ibid. 26, 198 (1960).CrossRefGoogle Scholar
11.Krivanek, O. L., Isoda, S., and Kobayashi, K., Philos. Mag. 36, 331 (1977).CrossRefGoogle Scholar
12.Bourret, A. and Bacman, J. J., Trans. Jpn. Inst. Met. Suppl. 27, 125 (1986).Google Scholar
13.Thibault, J., Rouviere, J. L., and Bourret, A., in Materials Science and Technology, edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (VCH, Weinheim, 1991), Vol. 4, p. 321.Google Scholar
14.Kohyama, M., Yamamoto, R., Ebata, Y., and Kinoshita, M., J. Phys. C: Solid State Phys. 21, 3205 (1988).CrossRefGoogle Scholar
15.Kohyama, M., Yamamoto, R., and Doyama, M., Phys. Status Solidi B 136, 31 (1986); M. Kohyama and R. Yamamoto, Phys. Rev. B 49, 17 102 (1994).CrossRefGoogle Scholar
16.Phillpot, S. R. and Wolf, D., Philos. Mag. A 60, 545 (1989).CrossRefGoogle Scholar
17.Li, F. and Lannin, J. S., Phys. Rev. Lett. 65, 1905 (1990).CrossRefGoogle Scholar
18.Zallen, R., The Physics of Amorphous Solids (Wiley, New York, 1983), p. 235.CrossRefGoogle Scholar
19.Kohyama, M., Yamamoto, R., and Doyama, M., Phys. Status Solidi B 136, 31 (1986).CrossRefGoogle Scholar
20.Narayan, J. and Nandedkar, A. S., Philos. Mag. B 63, 1181 (1991).CrossRefGoogle Scholar
21.Morris, J. R., Fu, C. L., and Ho, K. M., Phys. Rev. B 54, 132 (1996).CrossRefGoogle Scholar
22.Kohyama, M., Ichinose, H., Ishida, Y, and Nakasone, M., Mater. Sci. Forum 207–209, 261, (1996).Google Scholar
23.Wang, Z. Q., Dregia, S. A., and Stroud, D., Phys. Rev. B 49, 8206 (1994).CrossRefGoogle Scholar
24.Keblinski, P., Phillpot, S. R., Wolf, D., and Gleiter, H., Phys. Rev. Lett. 77, 2965 (1996); J. Am. Ceram. Soc. (March 1997).CrossRefGoogle Scholar
25.Tersoff, J., Phys. Rev. B 38, 9902 (1988).CrossRefGoogle Scholar
26.Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988).CrossRefGoogle Scholar
27.Keblinski, P., Phillpot, S. R., Wolf, D., and Gleiter, H., Acta Mater. 45, 987 1997.CrossRefGoogle Scholar
28.Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).CrossRefGoogle Scholar
29.Tanaka, I., Kleebe, H-J., Cinibulk, M. K., Bruley, J., Clarke, D. R., and Rühle, M., J. Am. Ceram. Soc. 77, 1911 (1994).Google Scholar
30.Kleebe, H-J., Cinibulk, M. K., Cannon, R. M., and Rühle, M., J. Am. Ceram. Soc., 76, 1969 (1993); H-J. Kleebe, M. J. Hoffmann, and M. Rühle, Z. Metallkd. 83, 610 (1992).CrossRefGoogle Scholar
31.Clarke, D. R., in Surfaces and Interfaces of Ceramic Materials, edited by Dufour, L. C., Monty, C., and Petot-Ervas, G., (Kluwer, Dordrecht, The Netherlands, 1989), pp. 5774.CrossRefGoogle Scholar
32.Cleri, F., Keblinski, P., Colombo, L., Phillpot, S. R., and Wolf, D., Phys. Rev. B 57, 6247 (1998).CrossRefGoogle Scholar
33.Brenner, D. W., Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
34.Cook, S. J. and Clancy, P., Phys. Rev. B 47, 7686 (1993).CrossRefGoogle Scholar
35.Broughton, J. Q. and Li, X. P., Phys. Rev. B 35 (17), 91209127 (1987).CrossRefGoogle Scholar
36.Cleri, F. (private communication).Google Scholar
37.Phillpot, S. R., Lutsko, J. F., Wolf, D., and Yip, S., Phys. Rev. B 40 (5), 28312840 (1988).CrossRefGoogle Scholar
38.Balamane, H., Halicioglu, T., and Tiller, W. A., Phys. Rev. B 46, 2250 (1992).CrossRefGoogle Scholar
39.Wolf, D., Surf. Sci. 226, 389 (1990); Philos. Mag. A 63, 337 (1991).CrossRefGoogle Scholar
40.Pate, B. B., Surf. Sci. 165, 83 (1986).CrossRefGoogle Scholar
41.Wolf, D. and Phillpot, S. R., Mater. Sci. Eng. A 107, 3 (1989).CrossRefGoogle Scholar
42.Wolf, D., J. Phys. (Paris), Colloque C4 46, C4197 (1985); D. Wolf and J. F. Lutsko, Z. Kristallographie 189, 239 (1989); D. Wolf, in Materials Interfaces, Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), Chap. 1, pp. 1–57.Google Scholar
43.Halicioglu, T., Phys. Rev. B 51, 7217 (1995).CrossRefGoogle Scholar
44.Read, W. T. and Shockley, W., Phys. Rev. 78, 275 (1950).CrossRefGoogle Scholar
45.Erdemir, A., Bindal, C., Fenske, G. R., Zuiker, C. D., Csencsits, R., Krauss, A. R., and Gruen, D. M., Diamond Films and Technol. 6, 31 (1996).Google Scholar