Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-10T22:19:39.793Z Has data issue: false hasContentIssue false

Residual stress, intermolecular force, and frictional properties distribution maps of diamond films for micro- and nano-electromechanical (M/NEMS) applications

Published online by Cambridge University Press:  03 March 2011

S. Gupta*
Affiliation:
Department of Physics and Materials Science, Missouri State University, Springfield, Missouri 65897
O.A. Williams
Affiliation:
Institute for Materials Research, Universiteit Hasselt, BE-3590 Diepenbeek, Belgium
R.J. Patel
Affiliation:
Department of Physics and Materials Science, Missouri State University, Springfield, Missouri 65897
K. Haenen
Affiliation:
Institute for Materials Research, Universiteit Hasselt, BE-3590 Diepenbeek, Belgium
*
a) Address all correspondence to this author.Present address: Univ. of Missouri, ECE Department, Columbia, MO 65211-2300. e-mail: guptas@missouri.edu
Get access

Abstract

Carbon in its various forms, specifically nanocrystalline diamond, may become a key material for the manufacturing of micro- and nano-electromechanical (M/NEMS) devices in the twenty-first century. To utilize effectively these materials for M/NEMS applications, understanding of their microscopic structure and physical properties (mechanical properties, in particular) become indispensable. The microcrystalline and nanocrystalline diamond films were grown using hot-filament and microwave chemical vapor deposition techniques involving novel CH4/[TMB for boron doping and H2S for sulfur incorporation] in high hydrogen dilution chemistry. To investigate residual stress distribution and intermolecular forces at nanoscale, the films were characterized using Raman spectroscopy and atomic force microscopy in terms of topography, force curves, and force volume imaging. Traditional force curve measures the force felt by the tip as it approaches and retracts from a point on the sample surface, whereas force volume is an array of force curves over an extended range of sample area. Moreover, detailed microscale structural studies are able to demonstrate that the carbon bonding configuration (sp2 versus sp3 hybridization) and surface chemical termination in both the un-doped and doped diamond have a strong effect on nanoscale intermolecular forces. The preliminary information in the force volume measurement was decoupled from topographic data to offer new insights into the materials’ surface and mechanical properties of diamond films. These measurements are also complemented with scanning electron microscopy and x-ray diffraction to reveal their morphology and structure and frictional properties, albeit qualitative using lateral force microscopy mode. We present these comparative results and discuss their potential impact for electronic and electromechanical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kalish, R.: Properties of Diamond, edited by Davies, G. (INSPEC, 1994), pp. 7991.Google Scholar
2.Garrido, J.A., Nebel, C.E., Stutzmann, M., Gheeraert, E., Casanova, N., Bustarret, E., Deneuville, A.: A new acceptor state in CVD-diamond. Diamond Relat. Mater. 11, 347 (2002).CrossRefGoogle Scholar
3.Angus, J.C., Koidl, P., Domitz, S.: Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC, Boca Raton, FL, 1986).Google Scholar
4.Bachmann, P.K., Messier, R.: Chem. Eng. News 67, 24 (1989).CrossRefGoogle Scholar
5.Nazare, M.H.: Properties and Growth of Diamond, edited by Davies, G. (EMIS Data Review Series, INSPEC, 1994), p. 85.Google Scholar
6.John, P.: The oxidation of (100) textured diamond. Diamond Relat. Mater. 11, 861 (2002).CrossRefGoogle Scholar
7.Cui, J.B., Robertson, J., Milne, W.I.: The effect of film resistance on electron field emission from amorphous carbon films. Diamond Relat. Mater. 10, 868 (2001).CrossRefGoogle Scholar
8.Chen, K.H., Lai, Y.L., Chen, L.C., Wu, J.Y., Kao, F.J.: High-temperature Raman study in CVD diamond. Thin Solid Films 270, 143 (1995).CrossRefGoogle Scholar
9.Chen, K.H., Wu, J.Y., Chen, L.C., Juan, C.C., Hsu, T.Wide bandgap semiconductors and devices—state-of-the-art program on compound semiconductors. Electrochemical Soc. Proc. 95-21, 57 (1995).Google Scholar
10.Yarbrough, W.A., Messier, R.: Chemical vapor deposited diamond films. Science 247, 688 (1990).CrossRefGoogle Scholar
11.Gruen, D.M.: Nanocrystalline diamond. Annu. Rev. Mater. Sci. 29, 211 (1999).CrossRefGoogle Scholar
12.Sharda, T., Rahaman, M.M., Nukaya, Y., Soga, T., Jimbo, T., Umeno, M.: High compressive stress in nanocrystalline diamond films grown by microwave plasma chemical vapor deposition. Diamond Relat. Mater. 10, 352 (2001).CrossRefGoogle Scholar
13.Morrison, N.A., Muhl, S., Rodil, S.E., Ferrari, A.C., Nesladek, M., Milne, W.I., Robertson, J.: The preparation, characterization and tribological properties of TA-C:H deposited using an electron cyclotron wave resonance plasma beam source. Phys. Status Solidi A 172, 79 (1999).3.0.CO;2-C>CrossRefGoogle Scholar
14.Jiao, S., Sumant, A., Kirk, M.A., Gruen, D.M., Krauss, A.R., Auciello, O.: Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J. Appl. Phys. 90, 118 (2001).CrossRefGoogle Scholar
15.Amaratunga, G. Watching the nanotube. IEEE Spectrum, Sept., 28 (2003).CrossRefGoogle Scholar
16.Sumant, A.V., Grierson, D.S., Gerbi, J.E., Birrell, J., Lanke, U.D., Auciello, O., Carlisle, J.A., Carpick, R.W.: Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039 (2004).CrossRefGoogle Scholar
17.Krauss, A.R., Auciello, O., Gruen, D.M., Jayatissa, A., Sumant, A., Tucek, J., Macini, D.C., Molodvan, N., Erdemir, A., Ersoy, D., Gardos, M.N., Busmann, H.G., Meyer, E.M., Ding, M.Q.: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diamond Relat. Mater. 10, 1952 (2001).CrossRefGoogle Scholar
18.Robertson, J.: Diamond-like carbon. Philos. Mag. B 76, 335 (1997).CrossRefGoogle Scholar
19.Kalish, R.: The search for donors in diamond. Diamond Relat. Mater. 10, 1749 (2001).CrossRefGoogle Scholar
20.Gupta, S., Weiner, B.R., Morell, G.: Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films. J. Appl. Phys. 91, 10088 (2002).CrossRefGoogle Scholar
21.Gupta, S., Martinez, A., Weiner, B.R., Morell, G.: Electrical conductivity studies of chemical vapor deposited sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 81, 283 (2002).CrossRefGoogle Scholar
22.Gupta, S., Weiner, B.R., Morell, G.: Role of sp2 C cluster size on the field-emission properties of sulfur-incorporated nanocomposite carbon thin films. Appl. Phys. Lett. 80, 1471 (2002).CrossRefGoogle Scholar
23.Williams, O.A., Curat, S., Jackman, R.B., Gerbi, J.E., Gruen, D.M.: n-type conductivity in ultrananocrystalline diamond films. Appl. Phys. Lett. 85, 1680 (2004).CrossRefGoogle Scholar
24.Gupta, S., Weiner, B.R., Morell, G.: Electron field emission properties of microcrystalline and nanocrystalline carbon thin films deposited by S-assisted hot filament CVD. Diamond Relat. Mater. 11, 799 (2002).CrossRefGoogle Scholar
25.Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle ScholarPubMed
26.Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Boston, MA, 1978), pp. 102111.Google Scholar
27.Knight, D.S., White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
28.Yoshikawa, M.: Properties and characterization of amorphous carbon films. Mater. Sci. Forum 52 & 53, 365 (1989).Google Scholar
29.Gupta, S., Katiyar, R.S., Gilbert, D.R., Singh, R.K., Morell, G.: Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition. J. Appl. Phys. 88, 5695 (2000).CrossRefGoogle Scholar
30.Bergmann, L., Nemanich, R.J.: Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films. J. Appl. Phys. 78, 6709 (1995).CrossRefGoogle Scholar
31.Nemanich, R.J., Glass, J.T., Luckovsky, G., Shröder, R.E.: Raman scattering characterization of carbon bonding in diamond and diamond-like thin films. J. Vac. Sci. Technol., A 6, 1783 (1988).CrossRefGoogle Scholar
32.Gupta, S., Weiner, B.R., Morell, G.: Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition. J. Mater. Res. 18(2), 363 (2003).CrossRefGoogle Scholar
33.Williams, O.A., Daenen, M., Haen, J.D., Haenen, K., Nesladek, M., Olieslaeger, M.D.: ADC05, Argonne National Laboratory, IL.Google Scholar
34.Dembo, M., Wang, Y.L.: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4), 2307 (1999).CrossRefGoogle ScholarPubMed
35.Domke, J., Parak, W.J., George, M., Gaub, H.E., Radmacher, M.: Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur. Biophys. J. 28, 179 (1999).CrossRefGoogle ScholarPubMed
36.Domke, J., Dannohl, S., Parak, W.J., Muller, O., Aicher, W.K., Radmacher, M.: Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf., B Biointerfaces 19, 367 (2000).CrossRefGoogle ScholarPubMed
37.Hoh, J.H., Heinz, W.F., A-Hassan, E. Support Note No. 240 Part B Digital Instruments (1997).Google Scholar
38.Rotsch, C., Radmacher, M.: Mapping local electrostatic forces with the atomic force microscope. Langmuir 13, 2825 (1997).CrossRefGoogle Scholar
39.Chhowalla, M., Ferrari, A.C., Robertson, J., Amaratunga, G.A.J.: Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl. Phys. Lett. 76, 1419 (2000).CrossRefGoogle Scholar
40.Ferrari, A.C., Robertson, J.: Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63(12), 1405 (2001).Google Scholar
41.Kuzmany, H., Pfeiffer, R., Salk, N., Günther, B.: The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42, 911 (2004).CrossRefGoogle Scholar