Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T14:33:12.087Z Has data issue: false hasContentIssue false

Relationship between domain structure and film thickness in epitaxial PbTiO3 films deposited on MgO(001) by reactive sputtering

Published online by Cambridge University Press:  31 January 2011

Won Kyoung Choi
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Kusung-Dong 373–1, Yusung-Gu, Taejon, Korea 305–701
Si Kyoung Choi
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Kusung-Dong 373–1, Yusung-Gu, Taejon, Korea 305–701
Hyuck Mo Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Kusung-Dong 373–1, Yusung-Gu, Taejon, Korea 305–701
Get access

Abstract

The epitaxial PbTiO3 thin films of different thickness were prepared on MgO(001) substrates by the reactive direct-current magnetron sputtering. The volume fraction of c domains, α, which was measured by x-ray diffractometry, increased rapidly from zero with the film thickness, being saturated at about 90% above 100 nm. The films were annealed in a PbO atmosphere at 700 °C for 8 h, and they were used to study the composition change in the Pb/(Pb + Ti) ratio and the relaxation of the residual intrinsic stress. The relationship between change of α and composition was weak. The stress state was calculated through the finite-element method. As for the small thickness, the tensile epitaxial stress overwhelmed compressive intrinsic and thermal stresses, and the domain structure was a-domain oriented. As for the large thickness, the compressive intrinsic stress together with the thermal stress overcame the tensile epitaxial stress, and the population turned into c domain.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Foster, C.M., Li, Z., Buckett, M., Miller, D., Baldo, P.M., Rehn, L.E., Bai, G.R., Guo, D., You, H., and Merkle, K.L., J. Appl. Phys. 78, 2607 (1995).CrossRefGoogle Scholar
2.Haertling, G.H., J. Vac. Sci. Technol. A 9, 414 (1991).CrossRefGoogle Scholar
3.Sheppard, L.M., Ceram. Soc. Bull. 71, 85 (1992).Google Scholar
4.Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., Ferroelectrics 118, 325 (1991).CrossRefGoogle Scholar
5.Li, Z., Foster, C.M., Guo, D., Zhang, H., Bai, G.R., Baldo, P.M., and Rehn, L. E., Appl. Phys. Lett. 65, 1106 (1994).CrossRefGoogle Scholar
6.Iijima, K., Tomita, Y., Takayama, R., and Veda, I., J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
7.Krupanidhi, S.B., Maffei, N., Sayer, M., and Assal, K.E., J. Appl. Phys. 54, 6601 (1983).CrossRefGoogle Scholar
8.Kushida, K. and Takeuchi, H., Appl. Phys. Lett. 50, 1800 (1987).CrossRefGoogle Scholar
9.Krupanidhi, S.B., Maffei, N., Sayer, M., and El-Assai, K., J. Appl. Phys. 54, 6601 (1983).CrossRefGoogle Scholar
10.Kim, S. and Baik, S., J. Vac. Sci. Technol. A. 13, 95 (1995).CrossRefGoogle Scholar
11.Kwak, B.S., Erbil, A., Budai, J.D., Chisholm, M.F., Boatner, L.A., and Wilkens, B.J., Phys. Rev. B 49, 14865 (1994).CrossRefGoogle Scholar
12.Otsubo, S., Maeda, T., Minamikawa, T., Yonezawa, Y., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. 29, L133 (1990).CrossRefGoogle Scholar
13.Ogawa, T., Senda, A., and Kasanami, T., Jpn. J. Appl. Phys. 30, 2145 (1991).CrossRefGoogle Scholar
14.Tuttle, B.A., Voigt, J.A., Garino, T.J., Goodnow, D.C., Schwarz, R.W., Lamppa, D.L., Headley, T.J., and Eatough, M.O., Proc. IEEE Int. Symp. Appl. Ferroelectr. 8, 344 (1992).Google Scholar
15.Kweon, S.Y., Yee, S.H., and Choi, S.K., J. Vac. Sci. Technol. A 15, 57 (1997).CrossRefGoogle Scholar
16.Choi, W.K., M.S. Thesis, KAIST, Taejon, Korea (1997).Google Scholar
17.Speck, J.S. and Pompe, W., J. Appl. Phys. 76, 466 (1994).CrossRefGoogle Scholar
18.Choi, H.M. and Choi, S.K., J. Vac. Sci. Technol. A 13, 2832 (1995).CrossRefGoogle Scholar
19.d'Heurle, F.M. and Harper, J.M.E, Thin Solid Films 171, 81 (1989).CrossRefGoogle Scholar
20.Windischmann, H., J. Vac. Sci. Technol. A 9, 2431 (1991).CrossRefGoogle Scholar
21.Thornton, J.A. and Hoffman, D.W., J. Vac. Sci. Technol. 14, 164 (1977).CrossRefGoogle Scholar
22.Yi, S.H., Kweon, S.Y., Choi, H.M., and Choi, S.K., J. Korean Ceram. Soc. 33, 802 (1996).Google Scholar
23.Foster, C.M., Pompe, W., Daykin, A.C., and Speck, J.S., J. Appl. Phys. 79, 1405 (1996).CrossRefGoogle Scholar
24.Xu, Y., Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, 1991).Google Scholar
25.Hoffman, G.L., Fahline, D.E., Messier, R., and Pilione, L.J., J. Vac. Sci. Technol. A 7, 2252 (1989).CrossRefGoogle Scholar
26.Gaskell, D.R., Introduction to Metallurgical Thermodynamics (McGraw-Hill, New York, 1981).Google Scholar
27.Pompe, W., Gong, X., Suo, Z., and Speck, J.S., J. Appl. Phys. 74, 6012 (1993).CrossRefGoogle Scholar
28.Tsai, F. and Cowley, J.M., Appl. Phys. Lett. 65, 1906 (1994).CrossRefGoogle Scholar
29.Fox, G.R., Krupanidhi, S.B., More, K.L., and Allard, L.F., J. Mater. Res. 7, 3039 (1992).CrossRefGoogle Scholar
30.Shirasaki, S-I., Solid State Commun. 9, 1217 (1971).CrossRefGoogle Scholar