Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T23:41:10.012Z Has data issue: false hasContentIssue false

Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods

Published online by Cambridge University Press:  13 November 2013

Waldemir Moura de Carvalho Jr.
Affiliation:
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-170, Brazil
Flavio Leandro Souza*
Affiliation:
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-170, Brazil
*
a)Address all correspondence to this author. e-mail: fleandro.ufabc@gmail.com, flavio.souza@pq.cnpq.br
Get access

Abstract

Photoelectrochemical cells offer a more elegant, clean, and sustainable way to store solar energy as chemical energy through the splitting of water into its primitive form (H2 and O2). Among many metal oxides pointed as candidates for this application, the fundamental characteristics of hematite (α-Fe2O3), such as abundance, excellent chemical stability in an aqueous environment, and favorable optical band gap, emerged as a promising photoanode. Although attractive, the poor optoelectronic properties necessitate a large application of overpotential for split water assisted by solar irradiation, limiting the high performance of this material. Since the electrode was built using materials in nanoscale, significant advances were achieved. This review highlights new insights and recent progress in the use of a purpose-built material process to build hematite electrodes for improving photocatalytic activity. In addition, reduction on the required overpotential by effective control-treatment of morphology and surface of vertically aligned hematite nanorods will be addressed. An interesting set of results were also discussed revisiting a novel strategy recently presented in the literature and complementary advances was illustrated. These latest efforts aid in pointing out the challenges or obstacles to be overcome using this morphology and in defining new opportunities.

Type
Reviews
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972).CrossRefGoogle Scholar
Bard, A.J., Whitesides, G.M., Zare, R.N., and McLafferty, F.W.: Holy grails of chemistry. Acc. Chem. Res. 28(3), 91 (1995).Google Scholar
Mao, S.S., Shen, S., and Guo, L.: Nanomaterials for renewable hydrogen production, storage and utilization. Prog. Nat. Sci. 22(6), 522 (2012).CrossRefGoogle Scholar
Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4), 432 (2011).Google Scholar
Tachibana, Y., Vayssieres, L., and Durrant, J.R.: Artificial photosynthesis for solar water-splitting. Nat. Photon. 6(8), 511 (2012).CrossRefGoogle Scholar
Liu, X., Wang, F., and Wang, Q.: Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 14(22), 7894 (2012).Google Scholar
Baeck, S.H., Choi, K.S., Jaramillo, T.F., Stucky, G.D., and McFarland, E.W.: Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15(15), 1269 (2003).Google Scholar
Gonçalves, R.H., Leite, L.D.T., and Leite, E.R.: Colloidal WO3 nanowires as a versatile route to prepare a photoanode for solar water splitting. ChemSusChem 5(12), 2341 (2012).Google Scholar
Zhang, X., Lu, X., Shen, Y., Han, J., Yuan, L., Gong, L., Xu, Z., Bai, X., Wei, M., Tong, Y., Gao, Y., Chen, J., Zhou, J., and Wang, Z.L.: Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 47(20), 5804 (2011).Google Scholar
Wang, H., Deutsch, T., and Turner, J.A.: Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155(5), F91 (2008).Google Scholar
Cowan, A.J., Tang, J., Leng, W., Durrant, J.R., and Klug, D.R.: Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114(9), 4208 (2010).CrossRefGoogle Scholar
Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. J. Renewable Sustainable Energy 11(3), 401 (2007).Google Scholar
Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., and Bisquert, J.: Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 134(9), 4294 (2012).Google Scholar
Hamann, T.W.: Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 41(26), 7830 (2012).Google Scholar
Hagfeldt, A. and Grätzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49 (1995).Google Scholar
Sun, J., Zhong, D.K., and Gamelin, D.R.: Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ. Sci. 3(9), 1252 (2010).CrossRefGoogle Scholar
van de Krol, R., Liang, Y., and Schoonman, J.: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311 (2008).CrossRefGoogle Scholar
Dinca, M., Surendranath, Y., and Nocera, D.G.: Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. U.S.A. 107(23), 10337 (2010).Google Scholar
Andrade, L., Lopes, T., Ribeiro, H.A., and Mendes, A.: Transient phenomenological modeling of photoelectrochemical cells for water splitting – application to undoped hematite electrodes. Int. J. Hydrogen Energy 36(1), 175 (2011).CrossRefGoogle Scholar
Maeda, K.: Photocatalytic water splitting using semiconductor particles: History, and recent developments. J. Photochem. Photobiol., C 12(4), 237 (2011).Google Scholar
Li, Y. and Zhang, J.Z.: Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photon. Rev. 4(4), 517 (2009).CrossRefGoogle Scholar
Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., and Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18(20), 2298 (2008).Google Scholar
Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., and Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31(14), 1999 (2006).Google Scholar
Hardee, K.L.: Semiconductor electrodes: V. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis. J. Electrochem. Soc. 123(7), 1024 (1976).Google Scholar
Kennedy, J.H.: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125(5), 709 (1978).Google Scholar
Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Trevellick, P.R.: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc. Faraday Trans. 79(9), 2027 (1983).CrossRefGoogle Scholar
Eggleston, C.M.: Geochemistry. Toward new uses for hematite. Science 320(5873), 184 (2008).Google Scholar
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110(11), 6446 (2010).Google Scholar
Klahr, B.M. and Hamann, T.W.: Voltage dependent photocurrent of thin film hematite electrodes. Appl. Phys. Lett. 99(6), 063508 (2011).Google Scholar
Katz, M.J., Riha, S.C., Jeong, N.C., Martinson, A.B.F., Farha, O.K., and Hupp, J.T.: Toward solar fuels: Water splitting with sunlight and “rust”? Coord. Chem. Rev. 256(21–22), 2521 (2012).Google Scholar
Iordanova, N., Dupuis, M., and Rosso, K.M.: Charge transport in metal oxides: A theoretical study of hematite alpha-Fe2O3 . J. Chem. Phys. 122(14), 144305 (2005).CrossRefGoogle ScholarPubMed
Shimizu, K., Lasia, A., and Boily, J-F.: Electrochemical impedance study of the hematite/water interface. Langmuir 28(20), 7914 (2012).Google Scholar
Liu, J., Shahid, M., Ko, Y.S., Kim, E., Ahn, T.K., Park, J.H., and Kwon, Y.U.: Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 15(24), 9775 (2013).CrossRefGoogle ScholarPubMed
Brillet, J., Grätzel, M., and Sivula, K.: Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 10(10), 4155 (2010).CrossRefGoogle ScholarPubMed
Gonçalves, R.H., Lima, B.H.R., and Leite, E.R.: Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133(15), 6012 (2011).CrossRefGoogle ScholarPubMed
Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11(5), 2119 (2011).Google Scholar
Kronawitter, C.X., Zegkinoglou, I., Rogero, C., Guo, J.H., Mao, S.S., Himpsel, F.J., and Vayssieres, L.: On the interfacial electronic structure origin of efficiency enhancement in hematite photoanodes. J. Phys. Chem. C 116(43), 22780 (2012).Google Scholar
Souza, F.L., Lopes, K.P., Nascente, P.A.P., and Leite, E.R.: Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Sol. Energy Mater. Sol. Cells 93, 362 (2009).Google Scholar
Cesar, I., Kay, A., Gonzalez Martinez, J.A., and Grätzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128(14), 4582 (2006).Google Scholar
Kay, A., Cesar, I., and Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128(49), 15714 (2006).CrossRefGoogle ScholarPubMed
Tilley, S.D., Cornuz, M., Sivula, K., and Grätzel, M.: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 122(36), 6549 (2010).Google Scholar
Hahn, N.T. and Mullins, C.B.: Photoelectrochemical performance of nanostructured Ti-and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 22, 6474 (2010).Google Scholar
Frydrych, J., Machala, L., Tucek, J., Siskova, K., Filip, J., Pechousek, J., Safarova, K., Vondracek, M., Seo, J.H., Schneeweiss, O., Grätzel, M., Sivula, K., and Zboril, R.: Facile fabrication of tin-doped hematite photoelectrodes: Effect of doping on magnetic properties and performance for light-induced water splitting. J. Mater. Chem. 22(43), 23232 (2012).Google Scholar
Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111(44), 16477 (2007).CrossRefGoogle Scholar
Sanchez, C., Sieber, K.D., and Somorjai, G.A.: The photoelectrochemistry of niobium doped α-Fe2O3 . J. Electroanal. Chem. 252(2), 269 (1988).CrossRefGoogle Scholar
Hisatomi, T., Dotan, H., Stefik, M., Sivula, K., Rothschild, A., Grätzel, M., and Mathews, N.: Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24(20), 2699 (2012).Google Scholar
Hisatomi, T., Brillet, J., Cornuz, M., Le Formal, F., Tetreault, N., Sivula, K., and Grätzel, M.: A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting. Faraday Discuss. 155, 223 (2012).CrossRefGoogle ScholarPubMed
Souza, F.L., Lopes, K.P., Longo, E., and Leite, E.R.: The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation. Phys. Chem. Chem. Phys. 11(8), 1215 (2009).CrossRefGoogle ScholarPubMed
Le Formal, F., Grätzel, M., and Sivula, K.: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20(7), 1099 (2010).Google Scholar
Zandi, O., Klahr, B.M., and Hamann, T.W.: Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: Resurrection of the dead layer. Energy Environ. Sci. 6(2), 634 (2013).Google Scholar
Bjoerksten, U., Moser, J., and Grätzel, M.: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6(6), 858 (1994).Google Scholar
Kharisov, B.I., Kharissova, O.V., and Jose-Yacaman, M.: Nanostructures with animal-like shapes. Ind. Eng. Chem. Res. 49(18), 8289 (2010).Google Scholar
Armelao, L., Granozzi, G., Tondello, E., Colombo, P., Principi, G., Lottici, P.P., and Antonioli, G.: Nanocrystalline α-Fe2O3 sol-gel thin films: A microstructural study. J. Non-Cryst. Solids 192193, 435 (1995).Google Scholar
Woo, K., Lee, H.J., Ahn, J.P., and Park, Y.S.: Sol–gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 15(20), 1761 (2003).Google Scholar
Mao, A., Han, G.Y., and Park, J.H.: Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a gold nanorod substrate. J. Mater. Chem. 20(11), 2247 (2010).CrossRefGoogle Scholar
Mohapatra, S.K., John, S.E., Banerjee, S., and Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21(14), 3048 (2009).Google Scholar
Murth, A.S.N. and Reddy, K.S.: Photoelectrochemical behaviour of undoped ferric oxide (α-Fe2O3) electrodes prepared by spray pyrolysis. Mater. Res. Bull. 19(2), 241 (1984).Google Scholar
Duret, A. and Grätzel, M.: Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109(36), 17184 (2005).CrossRefGoogle ScholarPubMed
Le Formal, F., Sivula, K., and Grätzel, M.: The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J. Phys. Chem. C 116(51), 26707 (2012).Google Scholar
Beermann, N., Vayssieres, L., Lindquist, S-E., and Hagfeldt, A.: Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147(7), 2456 (2000).Google Scholar
Wheeler, D.A., Wang, G., Ling, Y., Li, Y., and Zhang, J.Z.: Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5(5), 6682 (2012).Google Scholar
Jorand Sartoretti, C., Alexander, B.D., Solarska, R., Rutkowska, I.A., Augustynski, J., and Cerny, R.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109(28), 13685 (2005).Google Scholar
Martinson, A.B.F., DeVries, M.J., Libera, J.A., Christensen, S.T., Hupp, J.T., Pellin, M.J., and Elam, J.W.: Atomic layer deposition of Fe2O3 using ferrocene and ozone. J. Phys. Chem. C 115(10), 4333 (2011).Google Scholar
Klahr, B.M., Martinson, A.B., and Hamann, T.W.: Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1), 461 (2011).Google Scholar
Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J., and Grätzel, M.: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132(21), 7436 (2010).Google Scholar
Zhong, D.K., Cornuz, M., Sivula, K., Grätzel, M., and Gamelin, D.R.: Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4(5), 1759 (2011).Google Scholar
Mao, A., Kim, J.K., Shin, K., Wang, D.H., Yoo, P.J., Han, G.Y., and Park, J.H.: Hematite modified tungsten trioxide nanoparticle photoanode for solar water oxidation. J. Power Sources 210, 32 (2012).CrossRefGoogle Scholar
Zhong, L-S., Hu, J-S., Liang, H-P., Cao, A-M., Song, W-G., and Wan, L-J.: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18(18), 2426 (2006).Google Scholar
Kim, H.J., Choi, K.I., Pan, A.Q., Kim, I.D., Kim, H.R., Kim, K.M., Na, C.W., Cao, G.Z., and Lee, J.H.: Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J. Mater. Chem. 21(18), 6549 (2011).CrossRefGoogle Scholar
Li, J., Lai, X., Xing, C., and Wang, D.: One-pot synthesis of porous hematite hollow microspheres and their application in water treatment. J. Nanosci. Nanotechnol. 10(11), 7707 (2010).Google Scholar
Lin, K.S., Wang, Z.P., Chowdhury, S., and Adhikari, A.K.: Preparation and characterization of aligned iron nanorod using aqueous chemical method. Thin Solid Films 517(17), 5192 (2009).Google Scholar
Bora, D.K., Braun, A., Erni, R., Fortunato, G., Graule, T., and Constable, E.C.: Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23(8), 2051 (2011).Google Scholar
Xi, L., Tran, P.D., Chiam, S.Y., Bassi, P.S., Mak, W.F., Mulmudi, H.K., Batabyal, S.K., Barber, J., Loo, J.S.C., and Wong, L.H.: Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116(26), 13884 (2012).Google Scholar
Deng, J., Zhong, J., Pu, A., Zhang, D., Li, M., Sun, X., and Lee, S-T.: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012).Google Scholar
Warren, S.C., Voïtchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hébert, C., Rothschild, A., and Grätzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).Google Scholar
Wu, J-J., Lee, Y-L., Chiang, H-H., and Wong, D.K-P.: Growth and magnetic properties of oriented α-Fe2O3 nanorods. J. Phys. Chem. B 110, 18108 (2006).CrossRefGoogle ScholarPubMed
Mao, A., Park, N-G., Han, G.Y., and Park, J.H.: Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: Use for photoelectrochemical water splitting. Nanotechnology 22, 175703 (2011).Google Scholar
Rao, P.M. and Zheng, X.L.: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).Google Scholar
Nasibulin, A.G., Rackauskas, S., Jiang, H., Tian, Y., Mudimela, P.R., Shandakov, S.D., Nasibulina, L., Sainio, J., and Kauppinen, E.I.: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).CrossRefGoogle Scholar
Vincent, T., Gross, M., Dotan, H., and Rothschild, A.: Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. Int. J. Hydrogen Energy 37, 81028109 (2012).Google Scholar
Lin, Y., Zhou, S., Sheehan, S.W., and Wang, D.: Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133, 2398 (2011).Google Scholar
de Carvalho, V.A.N., Luz, R.A.S., Lima, B.H., Crespilho, F.N., Leite, E.R., and Souza, F.L.: Highly oriented hematite nanorods arrays for photoelectrochemical water splitting. J. Power Sources 205, 525 (2012).Google Scholar
Ferraz, L.C., Carvalho, W.M. Jr., Criado, D., and Souza, F.L.: Vertically oriented iron oxide films produced by hydrothermal process: Effect of thermal treatment on the physical chemical properties. ACS Appl. Mater. Interfaces 4(10), 5515 (2012).CrossRefGoogle ScholarPubMed
Hu, X. and Yu, J.C.: Continuous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave–hydrothermal method. Adv. Funct. Mater. 18(6), 880 (2008).Google Scholar
Vayssieres, L., Hagfeldt, A., and Lindquist, S.E.: Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials. Pure Appl. Chem. 72(1–2), 47 (2000).Google Scholar
Kronawitter, C.X., Zegkinoglou, I., Shen, S., Guo, J., Himpsel, F.J., Mao, S.S., and Vayssieres, L.: On the orbital anisotropy in hematite nanorod-based photoanodes. Phys. Chem. Chem. Phys. 15, 13483 (2013).Google Scholar
Shen, S., Guo, P., Wheeler, D.A., Jiang, J., Lindley, S.A., Kronawitter, C.X., Zhang, J.Z., Guo, L., and Mao, S.S.: Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 98679874 (2013).CrossRefGoogle ScholarPubMed
Kronawitter, C.X., Vayssieres, L., Shen, S., Guo, L., Wheeler, D.A., Zhang, J.Z., Antoun, B.R., and Mao, S.S.: A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4, 3889 (2011).Google Scholar
Byrappa, K. and Yoshimura, M.: Hydrothermal technology: Principles and applications. In Handbook of Hydrothermal Technology (William Andrew Publishing, Norwich, NY, 2001); p. 1.Google Scholar
Morey, G. and Niggli, P.: The hydrothermal formation of silicates: A review. J. Am. Chem. Soc. 35(9), 1086 (1913).CrossRefGoogle Scholar
Lencka, M.M., Anderko, A., and Riman, R.E.: Hydrothermal precipitation of lead zirconate titanate solid solutions: Thermodynamic modeling and experimental synthesis. J. Am. Ceram. Soc. 78(10), 2609 (1995).Google Scholar
Eckert, J.O., Hung-Houston, C.C., Gersten, B.L., Lencka, M.M., and Riman, R.E.: Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79(11), 2929 (1996).Google Scholar
Christensen, A.N., Savolainen, M-L., Johansson, G., Tolboe, O., and Paasivirta, J.: Hydrothermal preparation of goethite and hematite from amorphous iron(III) hydroxide. Acta Chem. Scand. 22, 1487 (1968).Google Scholar
Blesa, M.A. and Matijević, E.: Phase-transformations of iron-oxides, oxohydroxides, and hydrous oxides in aqueous-media. Adv. Colloid Interface Sci. 29(3–4), 173 (1989).Google Scholar
Vayssieres, L.: On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol. 1(1–2), 1 (2004).Google Scholar
Vayssieres, L., Beermann, N., Lindquist, S-E., and Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13(2), 233 (2001).Google Scholar
Wang, P., Wang, D., Lin, J., Li, X., Peng, C., Gao, X., Huang, Q., Wang, J., Xu, H., and Fan, C.: Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. ACS Appl. Mater. Interfaces 4(4), 2295 (2012).Google Scholar
Shen, S., Kronawitter, C.X., Jiang, J., Mao, S.S., and Guo, L.: Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 5(5), 327 (2012).Google Scholar
Lindgren, T., Wang, H.L., Beermann, N., Vayssieres, L., Hagfeldt, A., and Lindquist, S.E.: Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71(2), 231 (2002).Google Scholar
Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., and Guo, J.: One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17(19), 2320 (2005).Google Scholar
Morrish, R., Rahman, M., MacElroy, J.M., and Wolden, C.A.: Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 4(4), 474 (2011).Google Scholar
Jang, J.S., Lee, J., Ye, H., Fan, F-R.F., and Bard, A.J.: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113(16), 6719 (2009).Google Scholar
Kumar, P., Sharma, P., Shrivastav, R., Dass, S., and Satsangi, V.R.: Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energy 36(4), 2777 (2011).Google Scholar
Hu, Y-S., Kleiman-Shwarsctein, A., Forman, A.J., Hazen, D., Park, J-N., and McFarland, E.W.: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20(12), 3803 (2008).Google Scholar
Sivula, K.: Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4(10), 16241633 (2013).Google Scholar
Ling, Y., Wang, G., Reddy, J., Wang, C., Zhang, J.Z., and Li, Y.: The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. Ed. 51(17), 4074 (2012).Google Scholar
Kanan, M.W. and Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+ . Science 321(5892), 1072 (2008).Google Scholar
Kavan, L., Kratochvilova, K., and Grätzel, M.: Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J. Electroanal. Chem. 394(1–2), 93 (1995).Google Scholar
Stehle, R.C., Bobek, M.M., Hooper, R., and Hahn, D.W.: Oxidation reaction kinetics for the steam-iron process in support of hydrogen production. Int. J. Hydrogen Energy 36(23), 15125 (2011).Google Scholar
Bisquert, J., Fabregat-Santiago, F., Mora-Seró, I., Garcia-Belmonte, G., Barea, E.M., and Palomares, E.: A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg. Chim. Acta 361(3), 684 (2008).Google Scholar
Schultze, J.W.: Electrochemistry of novel materials. Adv. Mater. 8(4), 360 (1994).Google Scholar
Xavier, A.M., Ferreira, F.F., and Souza, F.L.: Morphological and structural evolution of one dimensional hematite nanorods. RSC Adv. (2013, accepted). Google Scholar
Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110(11), 6474 (2010).Google Scholar
Zhong, D.K. and Gamelin, D.R.: Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/alpha-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132(12), 4202 (2010).Google Scholar
Gamelin, D.R.: Water splitting: Catalyst or spectator? Nat. Chem. 4(12), 965 (2012).Google Scholar
Aroutiounian, V.: Investigation of ceramic Fe2O3 $\left\langle {T_a } \right\rangle$ photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energy 27(1), 33 (2002).Google Scholar
Jang, J.S., Yoon, K.Y., Xiao, X., Fan, F-R.F., and Bard, A.J.: Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag−Fe2O3 nanocomposite and Sn doping. Chem. Mater. 21(20), 4803 (2009).Google Scholar
McDonald, K.J. and Choi, K-S.: Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem. Mater. 23(7), 1686 (2011).Google Scholar
Zhong, D.K., Sun, J., Inumaru, H., and Gamelin, D.R.: Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J. Am. Chem. Soc. 131(17), 6086 (2009).Google Scholar
Hong, Y.R., Liu, Z., Al-Bukhari, S.F., Lee, C.J., Yung, D.L., Chi, D., and Hor, T.S.: Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chem. Commun. 47(38), 10653 (2011).Google Scholar
Cha, H.G., Song, J., Kim, H.S., Shin, W., Yoon, K.B., and Kang, Y.S.: Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem. Commun. 47(8), 2441 (2011).Google Scholar
Hou, Y., Zuo, F., Dagg, A., and Feng, P.: Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464 (2012).CrossRefGoogle ScholarPubMed
Xi, L., Chiam, S.Y., Mak, W.F., Tran, P.D., Barber, J., Loo, S.C.J., and Wong, L.H.: A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem. Sci. 4(1), 164 (2013).Google Scholar
Spray, R.L., McDonald, K.J., and Choi, K-S.: Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 115(8), 3497 (2011).Google Scholar
McDonald, K.J. and Choi, K-S.: Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem. Mater. 23(21), 4863 (2011).Google Scholar
Dotan, H., Sivula, K., Grätzel, M., Rothschild, A., and Warren, S.C.: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958 (2011).Google Scholar
Klahr, B.M. and Hamann, T.W.: Current and voltage limiting processes in thin film hematite electrodes. J. Phys. Chem. C 115(16), 8393 (2011).Google Scholar
Rahman, G. and Joo, O-S.: Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes. Int. J. Hydrogen Energy 37(19), 13989 (2012).CrossRefGoogle Scholar