Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-16T19:21:00.243Z Has data issue: false hasContentIssue false

Rapidly solidified Al–Cr alloys: Crystalline and quasicrystalline phases

Published online by Cambridge University Press:  31 January 2011

V. T. Swamy
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560012, India
S. Ranganathan
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560012, India
K. Chattopadhyay
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560012, India
Get access

Abstract

Rapidly solidified Al–Cr alloys up to 20 at. % Cr were studied to delineate the extent of crystalline and quasicrystalline phase formation in these alloys in comparison with as-cast alloys by using transmission electron microscopy and x-ray diffraction technique. The icosahedral quasicrystals are observed from 7 to 15 at. % Cr alloys, while equilibrium η–Al11Cr2 phase is completely absent. Both rapid solidification and subsequent thermal decomposition studies indicate that the main competing phase is θ–Al2Cr up to 15 at. % Cr. Beyond this composition ∊–Al4Cr is the dominant phase together with a small amount of γ4–Al7Cr3. We have shown that the electron diffraction patterns of Al–Cr quasicrystals are often associated with a diffuse intensity distribution, indicative of short-range order. The change in quasilattice constant with composition suggests the existence of structural vacancies. Further, a sudden change from coarse to ultrafine quasicrystalline grain structure in Al-7 at. % Cr alloy points to a change in nucleation mechanism from heterogeneous to homogeneous mode during the rapid solidification.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Shechtman, D.Blech, I.Gratias, D. and Cahn, J. W.Phys. Rev. Lett. 53 1951 (1984).CrossRefGoogle Scholar
2Lilienfeld, D.A.Nastasi, M.Johnson, H.H.Art, D.G. and Mayer, J.W.J. Mater. Res. 1 237 (1986).CrossRefGoogle Scholar
3Furrer, P. and Warlimont, H.Mater. Sci. Eng. 28 127 (1977).CrossRefGoogle Scholar
4Bendersky, L.Schaefer, R.J.Biancaniello, F. S. and Shechtman, D.J. Mater. Sci. 21 1889 (1986).CrossRefGoogle Scholar
5Dunlap, R. A. and Dini, K.Can. J. Phys. 63 1267 (1985).CrossRefGoogle Scholar
6Dunlap, R. A.Phys. Status Solidi A92, Kll (1985).Google Scholar
7Inoue, A.Kimura, M. and Masumoto, T.J. Mater. Sci. 22 1758 (1987).CrossRefGoogle Scholar
8Inoue, A.Kimura, H.M. and Masumoto, T.J. Mater. Sci. 22 1864 (1987).CrossRefGoogle Scholar
9Baker, J. C. and Cahn, J. W.Solidification (ASM, Metals Park, OH, 1971), p. 23.Google Scholar
10Saunders, N. and Rivlin, V. G.Mat. Sci. and Tech. 2 521 (1986).Google Scholar
11Bancel, P. A.Heiney, P. A.Stephens, P. W.Goldman, A. I. and Horn, P. M.Phys. Rev. Lett. 54 2422 (1985).CrossRefGoogle Scholar
12Bendersky, L.A. and Ridder, S.D.J. Mater. Res. 1 405 (1986).CrossRefGoogle Scholar
13Hume-Rothery, W. and Anderson, E.Philos. Mag. 5 383 (1960).CrossRefGoogle Scholar
14Shechtman, D. and Blech, I.Metall. Trans. A16A, 1005 (1985).CrossRefGoogle Scholar
15Chattopadhyay, K.Ranganathan, S.Subbanna, G. N. and Thangaraj, N.Scripta Metall. 19 767 (1985).CrossRefGoogle Scholar
16Henley, C. L.J. Non. Crystallogr. Solids 75 91 (1985).CrossRefGoogle Scholar
17Elser, V.Phys. Rev. B32 4891 (1985).Google Scholar
18Schaefer, R. J.Bendersky, L. A.Shechtman, D.Boettinger, W. J. and Biancaniello, F. S.Metall. Trans. A17A, 2117 (1986).CrossRefGoogle Scholar
19Bradley, A. J. and Taylor, A.Proc. R. Soc. 159 56 (1937).Google Scholar
20Chattopadhyay, K.Lele, S.Thangaraj, N. and Ranganathan, S.Acta Metall. 35 727 (1987).CrossRefGoogle Scholar
21Cooper, M. J.Acta Crystallogr. 13 257 (1960).CrossRefGoogle Scholar
22Smith, J. F. and Ray, A. E.Acta Crystallogr. 10 169 (1957).CrossRefGoogle Scholar
23Ramachandrarao, P. and G. Sastry, V. S.Pramana 25, L225 (1985).CrossRefGoogle Scholar
24Zhang, Z.Ye, H.Q. and Kuo, K.H.Philos. Mag. A52, L49 (1985).CrossRefGoogle Scholar
25Kuo, K.H.Key Engineering Materials 13–15 219 (1987).CrossRefGoogle Scholar
26Rao, K.V.Fidler, J. and Chen, M.S.Europhys. Lett. 1 647 (1986).CrossRefGoogle Scholar
27Inoue, A.Arnberg, L.Lehtinen, B.Oguchi, M. and Masumoto, T.Metall. Trans. A17A, 1657 (1986).CrossRefGoogle Scholar
28Knowles, K. M. and Stobbs, W. M.J. Microsc. 146 267 (1987).CrossRefGoogle Scholar
29Mukhopadhyay, N.K., Thangaraj, N.Chattopadhyay, K. and Ranganathan, S., J. Mater. Res. 2 299 (1987).CrossRefGoogle Scholar
30Denoyer, F.Heger, G.Lambert, M.Lang, J. M. and Sainfort, P.J. Physique. 48 1357 (1987).CrossRefGoogle Scholar
31Mukhopadhyay, N.K.Ranganathan, S. and Chattopadhyay, K.Philos. Mag. Lett. 56 121 (1987).CrossRefGoogle Scholar
32Henley, C. L.Philos. Mag. Lett. 58 87 (1988).CrossRefGoogle Scholar
33Steinhardt, P.J. (1987) (preprint).Google Scholar
34Ridder, R.de, Tendeloo, G. Van, and Amelinckx, S.Acta Crystallogr. A32 216 (1976).CrossRefGoogle Scholar
35Zhang, H.Wang, D. H. and Kuo, K. H.Phys. Rev. 37 6220 (1988).CrossRefGoogle Scholar