Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-07T14:04:05.589Z Has data issue: false hasContentIssue false

Raman and infrared investigations of glass and glass-ceramics with composition 2Na2O · 1CaO · 3SiO2

Published online by Cambridge University Press:  03 March 2011

Ervino C. Ziemath
Affiliation:
Departamento de Física, IGCE, Universidade Estadual Paulista, Cx. Postal 178, 13500-230-Rio Clao, SP, Brazil
Michel A. Aegerter
Affiliation:
Instituto de Física e Química de São Carlos, Universidade de São Paulo, Cx. Postal 369, 13560-970-São Carlos, SP, Brazil
Get access

Abstract

Precursor glass and glass-ceramics with molar composition 2Na2O · ICaO · 3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm−1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm−1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm−1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mozzi, R. L. and Warren, B. E., J. Appl. Crystallogr. 2, 164 (1969).CrossRefGoogle Scholar
2Shuker, R. and Gammon, R. W., Phys. Rev. Lett. 25 (4), 222 (1970).CrossRefGoogle Scholar
3Long, D. A., Raman Spectroscopy (McGraw-Hill, London, 1977).Google Scholar
4Fokin, V. M., Kalinina, A. M., and Filipovich, V. N., Sov. J. Glass Phys. Chem. 6 (2), 100 (1980).Google Scholar
5Kalinina, A. M., Filipovich, V. N., and Fokin, V. M., J. Non-Cryst. Solids 38 & 39, 723 (1980).CrossRefGoogle Scholar
6Fokin, V. M., Kalinina, A. M., and Filipovich, V. N., J. Cryst. Growth 52, 115 (1981).CrossRefGoogle Scholar
7Ziemath, E. C., Ph.D. Thesis, Universidade de Sāo Paulo, Brazil (1990).Google Scholar
8Freiman, S. W., Onoda, G. Y. Jr., and Pincus, A. G., in Advances in Nucleation and Crystallization in Glasses, edited by Hench, L. L. and Freiman, S. W. (The American Ceramic Society, Westerville, OH, 1971), p. 141.Google Scholar
9Keith, H. D. and Padden, F. J. Jr., J. Appl. Phys. 34 (8), 2409 (1963).CrossRefGoogle Scholar
10McDonald, W. S. and Cruickshank, D. W. J., Acta Crystallogr. 22, 37 (1967).CrossRefGoogle Scholar
11Weston, R. M. and Rogers, P. S., Mineral. Mag. 42, 325 (1978).CrossRefGoogle Scholar
12Powder Diffraction File–Inorganic Volume, edited by Berry, L. G. (JCPFS, Philadelphia, PA, 1983), files #10-486 and #10-489.Google Scholar
13Dent Glasser, L. S. and Mileson, J. S., J. Am. Ceram. Soc. 51 (1), 55 (1968).CrossRefGoogle Scholar
14Gonzales-Olivier, C. J. R., Ph.D. Thesis, Sheffield University, UK (1979).Google Scholar
15Wyckoff, R.W.G. and Morey, G.W., Am. J. Sci.-Fifth Series 12 (71), 419 (1926).CrossRefGoogle Scholar
16Kröger, C. and Blömer, J., Z. Anorg. Allg. Chem. 280, 51 (1955).CrossRefGoogle Scholar
17The Aldrich Library of FT-IR Spectra, edited by Pouchert, C.J., ed. I (Aldrich Chemical Co., Inc., Milwaukee, WI, 1985).Google Scholar
18Adams, R. V., Phys. Chem. Glasses 2 (2), 39 (1961).Google Scholar
19Park, J. W. and Chen, H., J. Non-Cryst. Solids 40, 515 (1980).CrossRefGoogle Scholar
20Gan Fuxi, Guosong, H., and Shizheng, C., J. Non-Cryst. Solids 52, 203 (1982).Google Scholar
21Uchino, T., Sakka, T., Hotta, K., and Iwasaki, M., J. Am. Ceram. Soc. 72 (11), 2173 (1989).CrossRefGoogle Scholar
22Husung, R. D. and Doremus, R. H., J. Mater. Res. 5, 2209 (1990).CrossRefGoogle Scholar
23Sweet, J. R. and White, W. B., Phys. Chem. Glasses 10 (6), 246 (1969).Google Scholar
24Geotti-Bianchini, F., De Riu, L., Gagliardi, G., Guglielmi, M., and Pantano, C. G., Glastech. Ber. 64 (8), 205 (1991).Google Scholar
25Dunken, H. H., in Treatise on Materials Science and Technology (Academic Press, New York, 1982), Vol. 22, p. 1.CrossRefGoogle Scholar
26Boccuzzi, F., Coluccia, S., Ghiotti, G., Monterra, C., and Zecchina, A., J. Phys. Chem. 82 (11), 1298 (1978).CrossRefGoogle Scholar
27Malinovsky, V. K. and Sokolov, A. P., Solid State Commun. 57, 757 (1986).CrossRefGoogle Scholar
28Malinovsky, V. K., Novikov, V. N., Parshin, P. P., Sokolov, A. P., and Zemlyanov, M. G., Europhys. Lett. 11 (1), 43 (1990).CrossRefGoogle Scholar
29Hass, M., J. Phys. Chem. Solids 31, 415 (1970).CrossRefGoogle Scholar
30McMillan, P., Am. Mineral. 69, 622 (1984).Google Scholar
31Virgo, D., Mysen, B. O., and Kushiro, I., Science 208, 1371 (1980).CrossRefGoogle Scholar
32Mysen, B. O., Virgo, D., and Seifert, F. A., Rev. Geophys. Space Phys. 20 (3), 353 (1982).CrossRefGoogle Scholar
33Exarhos, G. J., in Structure and Bonding in Non-Crystalline Solids, edited by Walrafen, G. E. and Revesz, A. G. (Plenum Press, New York, 1986), p. 203.CrossRefGoogle Scholar
34Mysen, B. O., Finger, L. W., Virgo, D., and Seifert, F.A., Am. Mineral. 67, 686 (1982).Google Scholar
35Zarzycki, J., Les Verres et 1 'État Vitreux (Masson, Paris, 1982).Google Scholar
36Brawer, S. A. and White, W. B., J. Chem. Phys. 63 (6), 2421 (1975).CrossRefGoogle Scholar
37Mysen, B. O., Virgo, D., and Scarfe, C. M., Am. Mineral. 65, 690 (1980).Google Scholar
38Lines, M. E., J. Non-Cryst. Solids 89, 143 (1987).CrossRefGoogle Scholar
39Mukhitdinova, I. A. and Yanush, O. V., Sov. J. Glass Phys. Chem. 15 (1), 19 (1989).Google Scholar
40Fukumi, K., Hayakawa, J., and Komiyama, T., J. Non-Cryst. Solids 119, 297 (1990).CrossRefGoogle Scholar
41Furukawa, T., Fox, K. E., and White, W. B., J. Chem. Phys. 75 (7), 3226 (1981).CrossRefGoogle Scholar
42Matson, D. W., Sharma, S. K., and Philpotts, J. A., J. Non-Cryst. Solids 58, 323 (1983).CrossRefGoogle Scholar
43Sharma, S. K., Mammone, J. F., and Nicol, M. F., Nature 292, 140 (1981).CrossRefGoogle Scholar
44Brawer, S. A., Phys. Rev. B 11 (8), 3173 (1975).CrossRefGoogle Scholar
45Zanotto, E. D. and James, P. F., J. Non-Cryst. Solids 104, 70 (1988).CrossRefGoogle Scholar
46Pantano, C. G. Jr., Dove, D. B., and Onoda, G. Y. Jr., J. Non-Cryst. Solids 19, 41 (1975).CrossRefGoogle Scholar
47Hench, L. L. and Clark, D. E., J. Non-Cryst. Solids 28, 83 (1978).CrossRefGoogle Scholar
48Tsunawaki, Y., Iwamoto, N., Hattori, T., and Mitsuishi, A., J. Non-Cryst. Solids 44, 369 (1981).CrossRefGoogle Scholar
49Yin, C. D., Okuno, M., Morikawa, H., Marumo, F., and Yamanaka, T., J. Non-Cryst. Solids 80, 167 (1986).CrossRefGoogle Scholar
50Doremus, R. H., Glass Science (John Wiley & Sons, New York, 1973).Google Scholar
51Brücker, R., Chun, H. U., and Goretzki, H., Glastech. Ber. 51 (1), 1 (1978).Google Scholar