Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T09:24:28.515Z Has data issue: false hasContentIssue false

Pyrolysis of self-assembled organic monolayers on oxide substrates

Published online by Cambridge University Press:  31 January 2011

Hyunjung Shin
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Yuhu Wang
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Uma Sampathkumaran
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Mark R. De Guire
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Arthur H. Heuer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Chaim N. Sukenik
Affiliation:
Department of Chemistry, Bar Ilan University, Ramat Gan, 52100, Israel
Get access

Abstract

The pyrolysis of siloxy-anchored, organic self-assembled monolayers (SAMs) on oxide substrates [titanium dioxide powder; hydrolyzed silicon dioxide on (100) silicon] was studied using x-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and mass spectroscopy (MS). Pyrolysis in air began on heating at 200 °C and was complete by 400 °C for both octadecyltrichlorosilane (OTS) and C16-thioacetate (TA) SAMs, as observed in TGA of SAM-coated TiO2 powders, and in XPS studies of TA-SAM-coated TiO2 powders and Si wafers after various heat treatments. In low-oxygen environments, pyrolysis of SAMs began at higher temperatures: between 250 and 400 °C for heating in ultrahigh vacuum (10−8 Torr) as observed in XPS studies of TA-SAMs on Si, and between 300 and 400 °C in nitrogen, as observed in TEM analysis of sulfonate SAMs under a TiO2 thin film on Si substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a)Ulman, A., An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press, New York, 1991);Google Scholar
(b)Ulman, A., Adv. Mater. 2, 573 (1990).CrossRefGoogle Scholar
2.Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J., Virden, J. W., and McVay, G. L., Science 264, 48 (1994).CrossRefGoogle Scholar
3.Shin, H., Collins, R. J., De Guire, M. R., Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar
4.Shin, H., Collins, R. J., De Guire, M. R., Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10, 699 (1995).CrossRefGoogle Scholar
5.Collins, R. J., Shin, H., De Guire, M. R., Heuer, A. H., and Sukenik, C. N., Appl. Phys. Lett. 69 (6), 860 (1996).CrossRefGoogle Scholar
6.Agarwal, M., De Guire, M. R., and Heuer, A. H., Appl. Phys. Lett. 71 (7), 891 (1997).CrossRefGoogle Scholar
7.Agarwal, M., De Guire, M.R., and Heuer, A. H., J. Am. Ceram. Soc. 80 (12), 2967 (1997).CrossRefGoogle Scholar
8.Wang, Y., Supothina, S., De Guire, M. R., Heuer, A. H., Collins, R. J., and Sukenik, C. N., Chem. Mater. 10, 21352144 (1998).CrossRefGoogle Scholar
9. (a)Kumar, A., Biebuyck, H. A., and Whitesides, G. M., Langmuir 10, 1498 (1994);CrossRefGoogle Scholar
(b)Charych, D. H. and Bednarski, M.D., MRS Bull. 17 (11), 61 (1992).CrossRefGoogle Scholar
10.Cohen, S. R., Naaman, R., and Sagiv, J., J. Phys. Chem. 90, 3054– 3056 (1986).CrossRefGoogle Scholar
11.Murphy, M. A., Nordgren, C. E., Fischetti, R. F., Blasie, J. K., Peticolas, L. J., and Bean, J.C., J. Phys. Chem. 99, 14,039 (1995).CrossRefGoogle Scholar
12.Calistri-Yeh, M., Kramer, E. J., Sharma, R., Zhao, W., Rafailovich, M. H., Sokolov, J., and Brock, J. D., Langmuir 12, 2747 (1996).CrossRefGoogle Scholar
13.Brandriss, S. and Margel, S., Langmuir 9, 1232 (1993).CrossRefGoogle Scholar
14.Kluth, G. J., Sung, M. M., and Maboudian, R., Langmuir 13 (14), 3775 (1997).CrossRefGoogle Scholar
15. (a)Balachander, N. and Sukenik, C. N., Langmuir 6, 1621 (1990);CrossRefGoogle Scholar
(b)Collins, R. J. and Sukenik, C. N., Langmuir 11, 2322 (1995).CrossRefGoogle Scholar
16. (a)Gallagher, P. K., Thermochim. Acta 26, 175 (1978);CrossRefGoogle Scholar
(b)Gallagher, P. K., Thermochim. Acta, 82, 325 (1984).CrossRefGoogle Scholar
17.Clarke, D. R., Ultramicroscopy 4, 33 (1979).CrossRefGoogle Scholar
18.Rühle, M. and Sass, N. L., Philos. Mag. A49, 759 (1984).CrossRefGoogle Scholar
19.Ness, J. N., Stobbs, W. M., and Page, T. F., Philos. Mag. A54, 679 (1986).CrossRefGoogle Scholar
20.Cinibulk, M.K., Kleebe, H-J., and Rühle, M., J. Am. Ceram. Soc. 76, 426 (1993).CrossRefGoogle Scholar
21.Chen, S-Y. and Chen, I-W., J. Am. Ceram. Soc. 78, 2929 (1995).CrossRefGoogle Scholar
22.Wright, J. S., Schwartz, J. M., Schmidt, L. D., and Falter Francis, L., J. Am. Ceram. Soc. 78, 2360 (1995).CrossRefGoogle Scholar
23. (a)Solomon, D.H. and Hawthorne, D. G., Chemistry of Pigments and Filler (John Wiley & Sons, Inc., New York, 1983);Google Scholar
(b)Diebold, M. P., Surf. Coatings Int. 1995 (6), 250 (1995).Google Scholar