Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T01:43:07.344Z Has data issue: false hasContentIssue false

Pulsed plasmas study of linear antennas microwave CVD system for nanocrystalline diamond film growth

Published online by Cambridge University Press:  23 November 2011

Jan Vlcek
Affiliation:
Department of Physics and Measurement, Institute of Chemical Technology Prague, CZ-16628 Prague 6, Czech Republic
Frantisek Fendrych*
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, CZ-18221 Prague 8, Czech Republic
Andrew Taylor
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, CZ-18221 Prague 8, Czech Republic
Michal Novotny
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, CZ-18221 Prague 8, Czech Republic
Michael Liehr
Affiliation:
Technical Consulting, D-63654 Buedingen, Germany
*
a)Address all correspondence to this author. e-mail: fendrych@fzu.cz
Get access

Abstract

Optical emission spectroscopy (OES) was used to study plasmas generated by a novel plasma-enhanced linear antennas microwave chemical vapor deposition system for nanocrystalline diamond (NCD) growth in gas mixtures of H2 + CH4 + CO2. Atomic hydrogen intensities were investigated for pulsed plasmas and continuous wave (CW) mode plasmas. OES was used to study the effect of pressure (0.38–2 mbar), microwave pulse frequency (3.8–25 kHz), and total gas flow (125–1000 sccm). By using the Boltzmann plot for atomic hydrogen line intensities, plasma electron temperatures for pulsed and CW plasmas were calculated. During experiments, NCD films were deposited, which were investigated by secondary electron microscopy and Raman spectroscopy in terms of surface crystalline morphology and nondiamond carbon content. NCD films produced in high pulse frequency plasmas show low sp2 content (less than 5%) and homogenous crystalline structure with only a small amount of crystalline defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsugawa, K., Ishihara, M., Kim, J., Hasegawa, M., and Koga, Y.: Large-area and low-temperature nanodiamond coating by microwave plasma chemical vapor deposition. New Diamond Front. Carbon Technol. 16(6), 337 (2006).Google Scholar
2.Butler, J.E. and Sumant, A.V.: The CVD of nanodiamond materials. Chem. Vap. Deposition 14, 145 (2008).CrossRefGoogle Scholar
3.Füner, M., Wild, C., and Koidl, P.: Simulation and development of optimized microwave plasma reactors for diamond deposition. Surf. Coat. Technol. 116, 853 (1999).Google Scholar
4.Pleuler, E., Wild, C., Füner, M., and Koidl, P.: The CAP-reactor, a novel microwave CVD system for diamond deposition. Diamond Relat. Mater. 11, 467 (2002).CrossRefGoogle Scholar
5.Fendrych, F., Taylor, A., Peksa, L., Kratochvílová, I., Vlček, J., Řezáčová, V., Petrák, V., Kluiber, Z., Fekete, L., Liehr, M., and Nesládek, M.: Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system. J. Phys. D: Appl. Phys. 43(37), 374018 (2010).Google Scholar
6.Taylor, A., Fendrych, F., Fekete, L., Vlček, J., Řezáčová, V., Petrák, V., Krucký, J., Nesládek, M., and Liehr, M.: Novel high frequency pulsed MW-linear antenna plasma-chemistry: Routes towards large area, low pressure nanodiamond growth. Diamond Relat. Mater. 20(4), 613 (2011).CrossRefGoogle Scholar
7.Elliott, M.A., May, P.W., Petherbridge, J., Leeds, S.M., Ashfold, M.N.R., and Wang, W.N.: Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasmas. Diamond Relat. Mater. 9(3–6), 311 (2000).Google Scholar
8.Vandevelde, T., Wu, T.D., Quaeyhaegens, C., Vlekken, J., D’Olieslaeger, M., and Stals, L.: Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin Solid Films 340(1–2), 159 (1999).Google Scholar
9.Larijani, M.M., Le Normand, F., and Cregut, O.: An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond. Appl. Surf. Sci. 253(8), 4051 (2007).Google Scholar
10.Bénédic, F., Duten, X., Syll, O., Lombardi, G., Hassouni, K., and Gicquel, A.: Spectroscopic diagnostics of pulsed microwave plasmas used for nanocrystalline diamond growth. Chem. Vap. Deposition 14, 173 (2008).CrossRefGoogle Scholar
11.Vlček, J., Fendrych, F., Taylor, A., Kratochvílová, I., Fekete, L., Nesládek, M., and Liehr, M.: Novel concepts for low-pressure, low-temperature nanodiamond growth using MW linear antenna plasma sources, in Diamond Electronics and Bioelectronics-Fundamentals to Applications III, edited by Bergonzo, P., Butler, J.E., Jackman, R.B., Loh, K.P., and Nesladek, M. (Mater. Res. Soc. Symp. Proc. 1203, Warrendale, PA, 2010) 1203-J05-05.Google Scholar
12.Gicquel, A., Hassouni, K., Silva, F., and Achard, J.: Modeling and diagnostics of microwave discharges (H2/CH4 and H2/CH4/B2H6) used for diamond and boron-doped diamond deposition. Curr. Appl. Phys. 1(6), 479 (2001).Google Scholar
13.Prawer, S. and Nemanich, R.J.: Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. London, Ser. A 362, 2537 (2004).Google Scholar
14.Ferrari, A.C. and Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477 (2004).Google Scholar
15.Fortunato, W., Chiquito, A.J., Galzerani, J.C., and Moro, J.R.: Crystalline quality and phase purity of CVD diamond films studied by Raman spectroscopy. J. Mater. Sci. 42(17), 7331 (2007).CrossRefGoogle Scholar