Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T21:19:13.689Z Has data issue: false hasContentIssue false

Processing of multilayer microcrystalline and nanocrystalline diamond thin films using Ar-rich microwave plasmas

Published online by Cambridge University Press:  01 December 2011

Nirmal Govindaraju
Affiliation:
Energy and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Chaitanya Kane
Affiliation:
Energy and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Raj N. Singh*
Affiliation:
Energy and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
*
a)Address all correspondence to this author. e-mail: Raj.Singh@uc.edu
Get access

Abstract

This article lays the foundation for the development of microwave plasma chemical vapor deposition process conditions for synthesizing multilayered microcrystalline and nanocrystalline diamond (MCD and NCD) thin films. The effects of gas composition and the diamond seeding medium are correlated with the film morphology and diamond phase purity. Results of process optimization experiments using single-layer diamond deposition indicate that for high gas-phase Ar content (≥90%) the film quality improves with reduced Ar content and with increasing thickness reaching a plateau above a thickness of ∼2 μm. Multilayer diamond deposition experiments with two different seeding media (25 nm and 1 μm) clearly show that it is feasible to selectively synthesize alternating MCD (60% Ar) and NCD (95% Ar) layers with good control of film quality and morphology, thereby setting the stage for development of multilayered diamond thin films with tailored properties for thermal management applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eden, R.C.: Application of diamond substrates for advanced high density packaging. Diam. Relat. Mater. 2, 1051 (1993).Google Scholar
2.Graebner, J.E. and Jin, S.: Chemical vapor deposited diamond for thermal management. JOM J. Min. Met. Mat. S. 50(6), 52 (1998).Google Scholar
3.Jagannadham, K., Watkins, T.R., and Dinwiddie, R.B.: Novel heat spreader coatings for high power electronic devices. J. Mater. Sci. 37, 1363 (2002).Google Scholar
4.Jin, S. and Mavoori, H.: Processing and properties of CVD diamond for thermal management. J. Electron. Mater. 27(11), 1148 (1998).Google Scholar
5.Seal, M.: Thermal and optical applications of thin film diamond. Philos. Trans. R. Soc. London, Ser. A 342(1664), 313 (1993).Google Scholar
6.Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A., and Gardinier, C.F.: Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401 (1992).Google Scholar
7.Ralchenko, V., Pimenov, S., Konov, V., Khomich, A., Saveliev, A., Popovich, A., Vlasov, I., Zavedeev, E., Bozhko, A., Loubnin, E., and Khmelnitskii, R.: Nitrogenated nanocrystalline diamond films: Thermal and optical properties. Diam. Relat. Mater. 16, 2067 (2007).Google Scholar
8.Liu, W.L., Shamsa, M., Calizo, I., Balandin, A.A., Ralchenko, V., Popovich, A., and Saveliev, A.: Thermal conduction in nanocrystalline diamond films: Effects of the grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 89, 1719151 (2006).Google Scholar
9.Catledge, S.A., Baker, P., Tarvin, J.T., and Vohra, Y.K.: Multilayer nanocrystalline/ microcrystalline diamond films studied by laser reflectance interferometry. Diam. Relat. Mater. 9, 1512 (2000).Google Scholar
10.Cruz, R., Rao, J., Rose, T., Lawson, K., and Nicholls, J.R.: DLC–ceramic multilayers for automotive applications. Diam. Relat. Mater. 15, 2055 (2006).Google Scholar
11.Kopf, A., Haubner, R., and Lux, B.: Multilayer coatings containing diamond and other hard materials on hardmetal substrates. Int. J. Refract. Met. H. 20, 107 (2002).Google Scholar
12.Li, H.Q., Leung, K.M., Ma, K.L., Ye, Q., Chong, Y.M., Zou, Y.S., Zhang, W.J., Lee, S.T., and Belloa, I.: Nanocubic boron nitride/nanodiamond multilayer structures. Appl. Phys. Lett. 91, 201918 (2007).Google Scholar
13.Pujada, B.R., Tichelaar, F.D., and Janssen, G.C.A.M.: Stress in tungsten carbide-diamond like carbon multilayer coatings. Appl. Phys. Lett. 90, 021913 (2007).Google Scholar
14.Strondl, C., van der Kolk, G.J., Hurkmans, T., Fleischer, W., Trinh, T., Carvalho, N.M., and de Hosson, J.Th.M.: Properties and characterization of multilayers of carbides and diamond-like carbon. Surf. Coat. Tech. 142144, 707 (2001).Google Scholar
15.Sun, F.H., Zhang, Z.M., Shen, H.S., and Chen, M.: Fabrication and application of smooth composite diamond films. Surf. Eng. 19(6), 461 (2003).Google Scholar
16.Takeuchi, S., Oda, S., and Murakawa, M.: Synthesis of multilayer diamond film and evaluation of its mechanical properties. Thin Solid Films 398399, 238 (2001).Google Scholar
17.Zhang, W., Tanaka, T.A., Xu, B.S., and Koga, Y.: Study on the diamond-like carbon multilayer films for tribological application. Diam. Relat. Mater. 14, 1361 (2005).Google Scholar
18.Govindaraju, N., Das, D., Singh, R.N., and Kosel, P.B.: High-temperature electrical behavior of nanocrystalline and microcrystalline diamond films. J. Mater. Res. 23(10), 2774 (2008).Google Scholar
19.Das, D., Jayaseelan, V., Ramamurti, R., Kukreja, R.S., Guo, L., and Singh, R.N.: Low surface temperature synthesis and characterization of diamond thin films. Diam. Relat. Mater. 15, 1336 (2006).Google Scholar
20.Ramamurti, R., Shanov, V., Singh, R.N., Mamedov, S., and Boolchand, P.: Raman spectroscopy study of the influence of processing conditions on the structure of polycrystalline diamond films. J. Vac. Sci. Technol. A 24(2), 179 (2006).Google Scholar
21.Gruen, D.M.: Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
22.Zaitsev, A.M.: Optical Properties of Diamond: A Data Handbook (Springer-Verlag, Berlin, 2001), p. 69.Google Scholar
23.Das, D., Singh, R.N., Chattopadhyay, S., and Chen, K.H.: Thermal conductivity of diamond films deposited at low surface temperatures. J. Mater. Res. 21, 2379 (2006).Google Scholar