Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T18:50:16.188Z Has data issue: false hasContentIssue false

Principles of the development of a silica dielectric for microelectronics packaging

Published online by Cambridge University Press:  31 January 2011

Tapan K. Gupta
Affiliation:
Westinghouse Electric Corporation, Electronic Systems Group, Baltimore, Maryland 21203
Jau-Ho Jean
Affiliation:
National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Recognizing that speed, size, reliability, and cost are the principal driving forces for advanced electronic packages, this review article describes the much needed development of a new, phase transformation-free, single-phase silica dielectric with a dielectric constant (k) of about 4, the lowest among the inorganic oxides, and a coefficient of thermal expansion (CTE) of about 3 ppm/°C, similar to that of Si. This dielectric, consisting largely of SiO2, represents a gain in media speed by about 50% over alumina dielectric, combined with an improvement in reliability of the package by a factor of about 1000. The feature size and system cost can also be drastically reduced by using this dielectric. It is made from a mixture of binary borosilicate glasses that normally exhibit an undesirable characteristic of precipitating cristobalite during sintering that severely weakens the structure. The most important aspect of this article is the design and development of a strategy that prevents the cristobalite growth by incorporating a crystal growth inhibitor in the binary mixture of glasses. Since kinetics, not thermodynamics, are shown to be the key to success of this strategy, the roles of rate-controlling parameters are deliberately emphasized. A working model is delineated to identify compositions that yield a cristobalite-free silica dielectric with values of CTE that match those of Si and GaAs. Critical issues of co-firing between metals and this dielectric are addressed within the context of multilayer packaging fabrication. Finally, a list of measured properties is presented that clearly shows new opportunities for this silica dielectric.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gupta, T. K., Int. J. Microcirct. Elect. Packaging, 17 1, First Qtr., pp 8097 (1994).Google Scholar
2.Tummala, R. R., in Microelectronics Packaging Handbook, edited by Tummala, R. R. and Rymaszewski, E.J. (Van Nostrand Reinhold, New York, 1989), Chap. 7.Google Scholar
3.Steinberg, J. I., Horowitz, S. J., and Bacher, R. J., in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices, edited by Blum, J. B. and Cannon, W.R. (Am. Ceram. Soc. Inc., Westerville, OH, 1986), pp. 3139.Google Scholar
4.Kingery, W. D., Bowen, H.K., and Uhlmann, D.R., in Introduction to Ceramics (John Wiley & Sons, New York, 1976), Chaps. 2–3 and 1718.Google Scholar
5.Kata, K., Shimada, Y., and Takamizawa, H., IEEE Trans. CHMT, 13 (2), 448451 (1990).Google Scholar
6.Gupta, T. K., Bechtold, J. H., Kuznicki, R. C., Kadoff, L.H., and Rossing, B. R., J. Mater. Sci. 12, 24212426 (1977).CrossRefGoogle Scholar
7.Jean, J-H. and Gupta, T.K., J. Mater. Res. 9, 486492 (1994).CrossRefGoogle Scholar
8.Jean, J-H. and Gupta, T.K., J. Mater. Res. 7, 33423347 (1992).Google Scholar
9.Jean, J-H. and Gupta, T. K., J. Mater. Res. 7, 31033111 (1992);Google Scholar
in Nucleation and Crystallization in Liquids and Glasses, edited by Weinberg, M.C., Ceram. Trans. 30, 347354 (1993).Google Scholar
10.Ainslie, N. G., Morelock, C.R., and Turnbull, D., in Symposium on Nucleation and Crystallization in Glasses and Melts (Am. Ceram. Soc., Westerville, OH, 1962), p. 97.Google Scholar
11.Wagstaff, F. E., Brown, S.D., and Cutler, I.B., Phys. Chem. Glasses 5, 76 (1964).Google Scholar
12.Wagstaff, F. E., J. Am. Ceram. Soc. 52, 650 (1969).Google Scholar
13.Uhlmann, D. R., in Advances in Nucleation and Crystallization in Glasses, edited by Hench, L.L. and Freiman, S. W. (Am. Ceram. Soc., Westerville, OH, 1971), p. 91.Google Scholar
14.Avrami, M., J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941).CrossRefGoogle Scholar
15.Espe, W., in Materials of High Vacuum Technology (Pergamon Press, Oxford, 1968), Vol. 2, Chap. 10.Google Scholar
16.Cox, S. M. and Kirby, P.L., Nature (London) 159, 162 (1947).CrossRefGoogle Scholar
17.Frischat, G. H., in Ionic Diffusion in Oxide Glasses (Trans. Tech., Bay Village, OH, 1975), pp. 138 and 147.Google Scholar
18.Gupta, T. K. and Jean, J-H., J. Mater. Res. 9, 9991005 (1994).Google Scholar
19.Jean, J-H. and Gupta, T.K., J. Mater. Res. 8, 356363 (1993).Google Scholar
20.Jean, J-H. and Gupta, T. K., J. Am. Ceram. Soc. 76 (8), 20102016 (1993); J. Mater. Res. 8, 1767–1769 (1993).CrossRefGoogle Scholar
21.Tie, W., Fangtian, G., Ao, Z., Yongzi, Z., Hiaoxing, Z., and Li, Q., in Collected Papers: XIV Int. Cong. on Glass (Ind. Ceram. Soc., Calcutta, India, 1986), Vol. 1, p. 374.Google Scholar
22.Imanaka, Y., Aoki, S., Kamehara, N., and Niwa, K., J. Ceram. Soc. Jpn. Int. Ed. 95, 10661068 (1987); J. Fujitsu Sci. Tech. 25, 73–79 (1989).Google Scholar
23.MacDowell, J. F., Alumina Science and Technology Handbook, (Am. Ceram. Soc., Westerville, OH, 1990), p 365.Google Scholar
24.Jean, J-H. and Gupta, T. K., J. Mater. Res. 7, 25142520 (1992).CrossRefGoogle Scholar
25.Sosman, R. B., in Phases of SiO2 (Rutgers Univ. Press., New Brunswick, NJ, 1965), pp. 121147.Google Scholar
26.Grimshaw, R. W., Hargreaves, J., and Roberts, A. L., Trans. Brit. Ceram. Soc. 55, 3656 (1956).Google Scholar
27.Jean, J-H. and Gupta, T. K., J. Mater. Res. 10, 13121320 (1995); J. Am. Ceram. Soc. 76 (3), 751–753 (1993).CrossRefGoogle Scholar
28.Jean, J-H. and Gupta, T. K., J. Mater. Res. 8, 23932399 (1993).CrossRefGoogle Scholar
29.Volf, M. B., in Chemical Approach to Glasses (Elsevier, New York, 1984), p. 416.Google Scholar
30.Jean, J-H. and Gupta, T. K., in Materials in Microelectronic and Optoelectronic Packaging, edited by Ling, H. C., Niwa, K., Shukla, V. N., Ceram. Trans. 33, 261–270 (1993); J. Mater. Res. 9, 771–780 (1994); J. Mater. Res. 9, 1990–1996 (1994).Google Scholar
31.Jean, J-H. and Gupta, T. K., IEEE Trans. CPMT, Part B 17 (2), 228233 (1994); Int. J. Microcircuits Elec. Packaging 17, (1), 2nd Qtr., 169–175 (1994) Int. Elec. Pkg. Conf. (IEPS), 1993, San Diego, CA, pp. 993–1002.Google Scholar
32.Mattox, D. M., Gurkovich, S. R., Olenick, J.A., and Mason, M., Ceram. Eng. Sci. Proc. 9 (11–12), 15671578 (1988).Google Scholar
33.Maxwell, J. C., in Electricity and Magnetism (Clarendon, Oxford, 1892), Vol. 1, p. 452.Google Scholar
34.Turner, J., J. Res. Natl. Bur. Stand., 37, 239 (1946).CrossRefGoogle Scholar
35.Tummala, R. R., J. Am. Ceram. Soc. 74 (5), 895908 (1991).CrossRefGoogle Scholar
36.Kumar, A. H. and Tummala, R. R., Int. J. Hybrid Microelectron. 14 (4), 137150 (1991).Google Scholar
37.Sawhill, H. T., Jensen, R. H., and Mikeska, K. R., Ceram. Trans. 15, 611628 (1990).Google Scholar
38.Shimada, Y., Utsumi, K., and Ikeda, T., Int. J. Hybrid Microelectron. 7 (4), 2937 (1984).Google Scholar
39.Kambe, R., Am. Ceram. Soc. Bull. 71 (6), 962968 (1992).Google Scholar
40.Nishigaki, S., Yano, S., Fukuta, J., Fukaya, M., and Fuwa, T., ISHM 1985, 225234 (1985).Google Scholar
41.Bhadwar, H. C., Sawhill, S. T., Scheiber, D. H., Kawasaki, S., and Kemp, E. A., Hyb. Circuit Tech., 3138 (May 1989).Google Scholar
42.Dow, A. L. and Green, M. J., Hybrid Tech., 2832 (Oct. 1991).Google Scholar
43.Dilazzaro, F. and Newmann, D., ISHM 1991, 409413 (1991).Google Scholar
44.Kata, K., Sasaki, A., Shimada, Y., and Utsumi, K., ISHM 1990 Proc., 308315 (1990).Google Scholar
45.Lu, G-Q., Sutterlin, R. C., and Gupta, T. K., J. Am. Ceram Soc. 76 (8), 19071914 (1993).CrossRefGoogle Scholar
46.Sutterlin, R. C., Lu, G-Q., and Gupta, T. K., in Materials in Microelectronic and Optoelectronic Packaging, edited by Ling, H. C., Niwa, K., and Shukla, V. N., Ceram. Trans. 33, 435444 (1993).Google Scholar
47.Adema, G. M., Berry, M. J. and Turlik, I., Elec. Packg. Prod., 7276 (Feb. 1992).Google Scholar
48.Garrou, P., Elec. Packg. Prod., suppl. 4447 (October 1992).Google Scholar
49.Gilbert, B. K. and Walters, W.L., ICMCM Proceedings, 167173 (1992).Google Scholar